The joy of z: an intermediate course in complex analysis and Riemann surfaces

Wilhelm Schlag

June 6, 2007
Contents

1 Basic complex analysis I 5
2 Basic complex analysis II 21
3 Harmonic functions on \(\mathbb{D} \) 37
4 Riemann surfaces 47
5 Differentials on Riemann surfaces 57
6 The Hodge theorem 69
7 The Riemann-Roch theorem 77
8 Green and Dirichlet 91
9 Green functions and classification 101
10 Uniformization I 109
11 Problems 115
12 Hints and Solutions 139
Chapter 1

From i to z: the basics of complex analysis

The field \mathbb{C} of complex numbers is obtained by adjoining i to the field \mathbb{R} or reals. The defining property of i is $i^2 + 1 = 0$ and complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are added component wise and multiplied according to the rule

$$z_1 \cdot z_2 = x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1)$$

which follows from $i^2 + 1 = 0$ and the distributional law. The conjugate of $z = x + iy$ is $\bar{z} = x - iy$ and we have $|z|^2 := z\bar{z} = x^2 + y^2$. Therefore every $z \neq 0$ has a multiplicative inverse given by $\frac{1}{z} := \frac{\bar{z}}{|z|^2}$ and \mathbb{C} becomes a field. Since complex numbers z can be represented as points or vectors in \mathbb{R}^2 in the Cartesian way, we can also assign polar coordinates (r, θ) to them. Clearly, $|z| = r$ and $z = r(\cos \theta + i \sin \theta)$. The addition theorems for cosine and sine imply that

$$z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

which reveals the remarkable fact that complex numbers are multiplies by multiplying their lengths and adding their angles. In particular, $|z_1z_2| = |z_1||z_2|$. This shows that power series behave as in the real case with respect to convergence, i.e.,

$$\sum_{n=0}^{\infty} a_n z^n$$

converges on $|z| < R$ and diverges for every $|z| > R$

$$R^{-1} = \limsup_{n \to \infty} |a_n|^\frac{1}{n}$$

where the sense of convergence is relative to the length metric $|\cdot|$ on complex numbers which is the same as the Euclidean distance on \mathbb{R}^2 (the reader should verify the triangle inequality); the formula for R of course follows from comparison with the geometric series. Note that the convergence is absolute on the disk $|z| < R$ and uniform on every compact subset of that disk. Moreover, the
series diverges for every \(|z| > R \) as can be seen by the comparison test. We can also write \(R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \) provided this limit exists. The first example that comes to mind here is

\[
\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \quad |z| < 1
\]

Another example is of course

\[
E(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} \tag{1.1}
\]

which converges absolutely and uniformly on every compact subset of \(\mathbb{C} \). Expanding with the binomial theorem shows that \(E(z_1 + z_2) = E(z_1)E(z_2) \). Recall the definition of the Euler constant \(e \): consider the ordinary differential equation (ODE) \(\dot{y} = y \) with \(y(0) = 1 \) which has a unique solution \(y(t) \) for all \(t \in \mathbb{R} \). Then set \(e := y(1) \). Let us solve our ODE iteratively (Picard method). Thus,

\[
y(t) = 1 + \int_{0}^{t} y(s) \, ds = 1 + t + \int_{0}^{t} (t-s)y(s) \, ds = \ldots \\
= \sum_{j=0}^{n} \frac{t^j}{j!} + \int_{0}^{t} (t-s)^j y(s) \, ds
\]

The integral on the right vanishes as \(n \to \infty \) and we obtain

\[
y(t) = \sum_{j=0}^{\infty} \frac{t^j}{j!}
\]

which in particular yields the usual series expansion for \(e \). Also, by the group property of flows,

\[
y(t_2)y(t_1) = y(t_1 + t_2)
\]

which proves that \(y(t) = e^t \) for every rational \(t \) and motivates why we define

\[
e^t := \sum_{j=0}^{\infty} \frac{t^j}{j!} \quad \forall \, t \in \mathbb{R}
\]

Hence, our series \(E(z) \) above is used as definition of \(e^z \) for all \(z \in \mathbb{C} \). We have the homomorphism property \(e^{z_1 + z_2} = e^{z_1} e^{z_2} \), and by comparison with the power series of \(\cos \) and \(\sin \) on \(\mathbb{R} \), we arrive at the famous Euler formula

\[
e^{i\theta} = \cos(\theta) + i\sin(\theta)
\]

for all \(\theta \in \mathbb{R} \). This in particular shows that \(z = re^{i\theta} \) where \((r, \theta) \) are the polar coordinates of \(z \). This in turn implies that

\[
(cos \theta + i \sin \theta)^n = \cos(n\theta) + i\sin(n\theta)
\]
for every \(n \geq 1 \) (de Moivre’s formula). Now suppose that \(z = re^{i\theta} \) with \(r > 0 \). Then by the preceding,

\[
z = e^{\log r + i\theta} \quad \text{or} \quad \log z = \log r + i\theta
\]

Note that the logarithm is not well-defined since \(\theta \) and \(\theta + 2\pi n \) for any \(n \in \mathbb{Z} \) both have the property that exponentiating leads to \(z \). Similarly,

\[
\left(r^{\frac{1}{n}} e^{i \frac{\theta}{n}} e^{\frac{2\pi i}{n}} \right)^n = z
\]

which shows that there are \(n \) different possibilities for \(\sqrt[n]{z} \). Later on we shall see how these functions become single-valued on their natural Riemann surfaces.

But for now, we of course wish to differentiate functions defined on some open set \(\Omega \subset \mathbb{C} \). There are two relevant notions of derivative here and we will need to understand how they relate. The first is the crucial linearization idea from multivariable calculus and the second copies the idea of difference quotients from calculus. In what follows we shall either use \(U \) or \(\Omega \) to denote planar regions, i.e., open and connected subsets of \(\mathbb{R}^2 \). Also, we will identify \(z = x + iy \) with the real pair \((x, y)\) and will typically write a complex valued function as \(f = u + iv = (u, v) \).

Definition 1.1. (a) We say that \(f \in C^1(\Omega) \) iff there exists \(Df \in C(\Omega) \), a matrix valued function, such that

\[
f(x + h) = f(x) + df(x)h + o(h) \quad |h| \to 0
\]

(b) We say that \(f \) is holomorphic on \(\Omega \) if

\[
f'(z) : = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}
\]

exists for all \(z \in \Omega \) and is continuous on \(\Omega \). We denote this by \(f \in \mathcal{H}(\Omega) \).

A function \(f \in \mathcal{H}(\mathbb{C}) \) is called entire. Obvious examples of holomorphic maps are the powers \(f(z) = z^n \) for all \(n \in \mathbb{Z} \) (if \(n \) is negative, then we exclude \(z = 0 \)). They satisfy \(f'(z) = nz^{n-1} \) by the binomial theorem. Also, since we can do algebra in \(\mathbb{C} \) the same way we did over \(\mathbb{R} \) it follows that the basic differentiation rules like sum, product, quotient, and chain rules continue to hold for holomorphic functions.

Recall that \(f = u + iv = (u, v) \) belongs to \(C^1(\Omega) \) iff the partials \(u_x, u_y, v_x, v_y \) exist and are continuous on \(\Omega \). If \(f \in \mathcal{H}(\Omega) \), then clearly (by letting \(w \) approach \(z \) along the \(x \) or \(y \)-directions, respectively)

\[
f'(z) = u_x + iv_x = -iu_y + v_y
\]

so that \(u_x = v_y \) and \(u_y = -v_x \), which is known as the Cauchy–Riemann equations. They are equivalent to the property that

\[
df = \left[\begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right] = \rho A, \quad \rho \geq 0, \quad A \in SL(2, \mathbb{R})
\]
CHAPTER 1. BASIC COMPLEX ANALYSIS I

In other words, at each point where a holomorphic function \(f \) has a nonvanishing derivative, its differential \(df \) is a conformal matrix: it preserves angles and their orientation. Conversely, if \(f \in C^1(\Omega) \) has the property that \(df \neq 0 \) everywhere on \(\Omega \) and is conformal, then \(f \in \mathcal{H}(\Omega) \). Let us summarize these observations.

Theorem 1.2. A complex valued function \(f \in C^1(\Omega) \) is holomorphic iff the Cauchy-Riemann (CR) system holds in \(\Omega \). This is equivalent to \(df \) being the composition of a rotation and a dilation (possibly by zero) at every point in \(\Omega \).

Proof. We already saw the (CR) is necessary. Conversely, since \(f \in C^1(\Omega) \), we can write

\[
\begin{align*}
 u(x + \xi, y + \eta) &= u(x, y) + u_x(x, y)\xi + u_y(x, y)\eta + o(|(\xi, \eta)|) \\
 v(x + \xi, y + \eta) &= v(x, y) + v_x(x, y)\xi + v_y(x, y)\eta + o(|(\xi, \eta)|)
\end{align*}
\]

Using that \(u_x = v_y \) and \(u_y = -v_x \) we obtain, with \(\zeta = \xi + i\eta \)

\[
f(z + \zeta) - f(z) = (u_x + i v_x)(z)(\xi + i\eta) + o(|\zeta|)
\]

which of course proves that \(f'(z) = u_x + iv_x = v_y - iu_y \) as desired. The second part was already covered above.

Note that \(f(z) = \overline{z} \) is \(C^1(\mathbb{C}) \) but not holomorphic (since it reverses orientations). Also note that \(f(z) = z^2 \) doubles angles at \(z = 0 \) (in the sense that curves crossing at 0 at angle \(\alpha \) get mapped onto curves intersecting at 0 at angle \(2\alpha \)), so conformality is lost there.

We now introduce a special class of holomorphic functions that play a crucial role in complex analysis. In what follows, we shall set \(\mathbb{C}^* := \mathbb{C} \setminus \{0\} \). Also, we let \(\mathbb{C}_\infty \) be the one-point compactification of \(\mathbb{C} \); i.e., \(\mathbb{C}_\infty = \mathbb{C} \cup \{\infty\} \) with the neighborhood base of \(\infty \) being given by the complements of all compact sets in \(\mathbb{C} \).

Lemma 1.3. Every \(A \in GL(2, \mathbb{C}) \) defines a transformation

\[
T_A(z) := \frac{az + b}{cz + d}, \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

which is holomorphic on \(\mathbb{C} \setminus \{-\frac{d}{c}\} \) and continuous as a map from \(\mathbb{C}_\infty \to \mathbb{C}_\infty \). It is called a fractional linear or Möbius transformation. The map \(A \mapsto T_A \) only depends on the equivalence class of \(A \) under the relation \(A \sim B \) iff \(A = \lambda B \), \(\lambda \in \mathbb{C}^* \). In other words, the family of all Möbius transformations is the same as

\[
PSL(2, \mathbb{C}) := SL(2, \mathbb{C})/\pm \text{Id}
\]

We have \(T_A \circ T_B = T_{A \circ B} \) and \(T_A^{-1} = T_{A^{-1}} \). In particular, every Möbius transform is a homeomorphism of \(\mathbb{C}_\infty \).

Proof. All of these properties are quite immediate and the reader will have no difficulty verifying them. \(\square \)
Since
\[T'_A(z) = \frac{ad - bc}{(cz + d)^2} \]
we remark that \(T_A \) is conformal away from \(-\frac{d}{c}\).

Lemma 1.4. Every Möbius transformation is the composition of four elementary maps:

- translations \(z \mapsto z + z_0 \)
- dilations \(z \mapsto \lambda z, \ \lambda > 0 \)
- rotations \(z \mapsto e^{i\theta} z, \ \theta \in \mathbb{R} \)
- inversion \(z \mapsto \frac{1}{z} \)

Proof. If \(c = 0 \), then \(T_A(z) = \frac{a}{d} z + \frac{b}{d} \). If \(c \neq 0 \), then
\[T_A(z) = \frac{bc - ad}{c^2} \frac{1}{z + \frac{d}{c}} + \frac{a}{c} \]
and we are done.

The reader will have no difficulty verifying that \(z \mapsto \frac{z}{z+1} \) take the right half-plane on the disk \(\mathbb{D} := \{ |z| < 1 \} \). In particular, \(i \mathbb{R} \) gets mapped on the unit circle. Similarly, \(z \mapsto \frac{2z-1}{2z+1} \) takes \(\mathbb{D} \) onto itself with the boundary going onto the boundary. If we include all lines into the family of circles (they are circles passing through \(\infty \)) then these examples can serve to motivate the following lemma.

Lemma 1.5. Fractional linear transformations take circles onto circles.

Proof. In view of the previous lemma, the only care requiring an argument is the inversion. Thus, let \(|z - z_0| = r \) be a circle and set \(w = \frac{1}{z} \). Then
\[0 = |z|^2 - 2 \text{Re}(\bar{z} z_0) + |z_0|^2 - r^2 \]
\[= \frac{1}{|w|^2} - 2 \frac{\text{Re}(wz_0)}{|w|^2} + |z_0|^2 - r^2 \]
If \(|z_0| = r \), then one obtains the equation of a line in \(w \). Otherwise, we obtain the equation
\[0 = \left| w - \frac{\bar{z}_0}{|z_0|^2 - r^2} \right|^2 - \frac{r^2}{(|z_0|^2 - r^2)^2} \]
which is a circle. We leave it to the reader to check that a line goes to a circle or a line.

Since \(Tz = z \) is a quadratic equation for any Möbius transform \(T \), we see that \(T \) can have at most two fixed points unless it is the identity. It is also clear that every Möbius transform has at least one fixed point. The map \(Tz = z + 1 \) has exactly one fixed point, namely \(z = \infty \), whereas \(Tz = \frac{1}{z} \) has two, \(z = \pm 1 \).
Lemma 1.6. A fractional linear transformation is determined completely by its action on three distinct points. Moreover, given \(z_1, z_2, z_3 \in \mathbb{C}_\infty \) distinct, there exists a unique fractional linear transformation \(T \) with \(Tz_1 = 0, Tz_2 = 1, Tz_3 = \infty \).

Proof. For the first statement, suppose that \(S, T \) are Möbius transformations that agree at three distinct points. Then \(S^{-1} \circ T \) has three fixed points and is thus the identity. For the second statement, let

\[
Tz := \frac{z - z_1 z_2 - z_3}{z - z_3 z_2 - z_1}
\]

in case \(z_1, z_2, z_3 \in \mathbb{C} \). If any one of these points is \(\infty \), then we obtain the correct formula by passing to the limit here. \(\square \)

Definition 1.7. The cross ratio of four points \(z_0, z_1, z_2, z_3 \in \mathbb{C}_\infty \) is defined as

\[
[z_0 : z_1 : z_2 : z_3] := \frac{z_0 - z_1 z_2 - z_3}{z_0 - z_3 z_2 - z_1}
\]

This concept is most relevant for its relation to Möbius transformations.

Lemma 1.8. The cross ratio of any four distinct points is preserved under Möbius transformations. Moreover, four distinct points lie on a circle iff their cross ratio is real.

Proof. Let \(z_1, z_2, z_3 \) be distinct and let \(Tz_j = w_j \) for \(T \) a Möbius transformation and \(1 \leq j \leq 3 \). Then for all \(z \in \mathbb{C} \),

\[
[w : w_1 : w_2 : w_3] = [z : z_1 : z_2 : z_3] \quad \text{provided } w = Tz
\]

This follows from the fact that the cross ratio on the left-hand side defines a Möbius transformation \(S_1 w \) with the property that \(S_1 w_1 = 0, S_1 w_2 = 1, S_1 w_3 = \infty \), whereas the right-hand side defines a transformation \(S_0 \) with \(S_0 z_1 = 0, S_0 z_2 = 1, S_0 z_3 = \infty \). Hence \(S_1^{-1} \circ S_0 = T \) as claimed. The second statement is an immediate consequence of the first and the fact that if any three distinct points \(z_1, z_2, z_3 \in \mathbb{R} \), then a fourth point \(z_0 \) has a real-valued cross ratio with these three iff \(z_0 \in \mathbb{R} \). \(\square \)

We can now define what it means for two points to be symmetric relative to a circle (or line — recall that this is included in the former).

Definition 1.9. Let \(z_1, z_2, z_3 \in \Gamma \) where \(\Gamma \subset \mathbb{C}_\infty \) is a circle. We say that \(z \) and \(z^* \) are symmetric relative to \(\Gamma \) iff

\[
[z : z_1 : z_2 : z_3] = [z^* : z_1 : z_2 : z_3]
\]

Obviously, if \(\Gamma = \mathbb{R} \), then \(z^* = \bar{z} \). In other words, if \(\Gamma \) is a line, then \(z^* \) is the reflection of \(z \) across that line. If \(\Gamma \) is a circle of finite radius, then we can reduce matters to this case by an inversion.
Lemma 1.10. Let $\Gamma = \{|z - z_0| = r\}$. Then for any $z \in \mathbb{C}_\infty$,

$$z^* = \frac{r^2}{\bar{z} - z_0}$$

Proof. It suffices to consider the unit circle. Then

$$[z; z_1; z_2; z_3] = [\bar{z}; z_1^{-1}; z_2^{-1}; z_3^{-1}] = [1/\bar{z}; z_1; z_2; z_3]$$

In other words, $z^* = \frac{1}{\bar{z}}$. The general case now follows from this via a translation and dilation. \qed

Let us now return to the investigation of holomorphic functions. Obvious examples of such functions are given by power series within their disk of convergence. Let us make this more precise.

Definition 1.11. We say that $f : \Omega \to \mathbb{C}$ is analytic (or $f \in A(\Omega)$) if f is represented by a convergent power series expansion locally around every point of Ω.

Lemma 1.12. $A(\Omega) \subset H(\Omega)$

Proof. Suppose $z_0 \in \Omega$ and

$$f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \quad \forall |z - z_0| < r(z_0)$$

where $r(z_0) > 0$. As in real calculus, one checks that differentiation can be interchanged with summation and in fact,

$$f'(z) = \sum_{n=0}^{\infty} na_n(z - z_0)^{n-1} \quad \forall |z - z_0| < r(z_0)$$

In fact, we can of course differentiate any number of times and

$$f^{(k)}(z) = \sum_{n=0}^{\infty} (n)_k a_n(z - z_0)^{n-k} \quad \forall |z - z_0| < r(z_0)$$

where $(n)_k = n(n-1) \ldots (n-k+1)$. This proves also that $a_n = \frac{f^{(n)}(z_0)}{n!}$ for all $n \geq 0$. \qed

We note that with e^z defined as above, $(e^z)' = e^z$ from the series representation (1.1). It is a remarkable fact of basic complex analysis that $A(\Omega) = H(\Omega)$. To establish equality here, we need to be able to integrate.

Definition 1.13. For any C^1-curve $\gamma : [0,1] \to \Omega$ and any complex-valued $f \in C(\Omega)$ we define

$$\int_{\gamma} f(z) \, dz = \int_{0}^{1} f(\gamma(t)) \gamma'(t) \, dt$$

If γ is a closed curve ($\gamma(0) = \gamma(1)$) then we also write $\oint_{\gamma} f(z) \, dz$ for this integral.
From the chain rule, we deduce the fundamental fact that the line integrals of this definition do not depend on any particular C^1 parametrization of the curve as long as the orientation is preserved (hence, there is no loss in assuming that γ is parametrized by $0 \leq t \leq 1$). Again from the chain rule, we immediately obtain the following: if $f \in \mathcal{H}(\Omega)$, then
\[\int_\gamma f'(z)\,dz = f(\gamma(1)) - f(\gamma(0)) \]
for any γ as in the definition. In particular,
\[\oint_\gamma f'(z)\,dz = 0 \quad \forall \text{ closed curves } \gamma \text{ in } \Omega \]
On the other hand, let us compute with $\gamma_r(t) := re^{it}$, $r > 0$,
\[\int_{\gamma_r} z^n\,dz = \int_0^{2\pi} re^{int} \,r ie^{it}dt = \left\{ \begin{array}{ll} 0 & n \neq -1 \\ 2\pi i & n = -1 \end{array} \right. \tag{1.2} \]
In $\Omega = \mathbb{C}^*$, the function $f(z) = z^n$ has the primitive $F_n(z) = \frac{z^{n+1}}{n+1}$ provided $n \neq -1$. This explains why we obtain 0 for all $n \neq -1$. On the other hand, if $n = -1$ we realize from our calculation that $\frac{1}{z}$ does not have a (holomorphic) primitive in \mathbb{C}^*. This issue merits further investigation (for example, we need to answer the question whether $\frac{1}{z}$ has a local primitive in \mathbb{C}^* — this is indeed the case and this primitive is a branch of log z). Before doing so, however, we record the famous Cauchy formula (or at least, the easiest manifestation thereof).

Theorem 1.14. Let $f \in \mathcal{H}(\Omega)$ and suppose U is an open region with a piecewise C^1 boundary and $\bar{U} \subset \Omega$ compactly. Then
\[\oint_{\partial U} f(z)\,dz = 0 \]

Proof. By Green’s formula,
\[\oint_{\partial U} f(z)\,dz = \iint_U (-u_y - v_x)\,dxdy + i\int_U (-u_y + v_x)\,dxdy = 0 \]
where the final equality sign follows from the Cauchy–Riemann equations.

The Green’s formula is best understood as a corollary to Stokes’ theorem on manifolds with boundary. We develop the requisite calculus that makes all of this (including the preceding proof) more transparent in Chapter 5.

Theorem 1.14 allows us to define local primitives. In particular, we can clarify the issue of the logarithm as the local primitive of $\frac{1}{z}$.\footnote{This means that we can write the boundary as a finite union of C^1 curves $\gamma : [0, 1] \to M$.}

Before doing so, however, we record the famous Cauchy formula (or at least, the easiest manifestation thereof).
Proposition 1.15. Let Ω be simply connected. Then for every $f \in \mathcal{H}(\Omega)$ so that $f \neq 0$ everywhere on Ω there exists $g \in \mathcal{H}(\Omega)$ with $e^{g(z)} = f(z)$. Thus, for any $n \geq 1$ there exists $f_n \in \mathcal{H}(\Omega)$ with $(f_n(z))^n = f(z)$ for all $z \in \Omega$. In particular, if $\Omega \subset \mathbb{C}^*$ is simply connected, then there exists $g \in \mathcal{H}(\Omega)$ with $e^{g(z)} = z$ everywhere on Ω. Such a g is called a branch of $\log z$. Similarly, there exist holomorphic branches of any $\sqrt[n]{z}$ on Ω, $n \geq 1$.

Proof. If $e^g = f$, then $g' = \frac{f'}{f}$ in Ω. So fix any $z_0 \in \Omega$ and define

$$g(z) := \int_{z_0}^{z} \frac{f'(\zeta)}{f(\zeta)} d\zeta$$

where the integration path joins z_0 to z and consists a finite number of line segments (say). We claim that $g(z)$ does not depend on the choice of path. Indeed, by the simple connectivity of Ω any closed curve γ in Ω consisting of a finite number of line segments is the boundary of a finite union of open sets $U \subset \Omega$ as in Theorem 1.14. But then the integral over γ would need to vanish by that theorem which proves our claim. It is now an easy matter to check that $g'(z) = \frac{f'(z)}{f(z)}$. Indeed,

$$\frac{g(z + h) - g(z)}{h} = \int_0^1 \frac{f'(z + th)}{f(z + th)} dt \to \frac{f'(z)}{f(z)} \text{ as } h \to 0$$

So $g \in \mathcal{H}(\Omega)$ and $(fe^{-g})' = 0$ shows that $e^g = cf$ where c is some constant different from zero and therefore $c = e^k$ for some $k \in \mathbb{C}$. Hence, $e^{g(z) - k} = f(z)$ for all $z \in \Omega$ and we are done. \qed

Intimately tied up with the $n = -1$ case of (1.2) is the following fundamental fact of complex analysis.

Proposition 1.16. Let $D(z_0, r) \subset \Omega$ and $f \in \mathcal{H}(\Omega)$. Then

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta \text{ where } \gamma(t) = z_0 + re^{it}$$

for all $z \in D(z_0, r)$.

Proof. Fix any $z \in D(z_0, r)$ and apply Theorem 1.14 to the region $U_\varepsilon := D(z_0, r) \setminus D(z, \varepsilon)$ where $\varepsilon > 0$ is small. Then

$$0 = \frac{1}{2\pi i} \int_{\partial U_\varepsilon} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$- \frac{1}{2\pi i} \int_{\partial D(z, \varepsilon)} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta - \frac{f(z)}{2\pi i} \int_{\partial D(z, \varepsilon)} \frac{1}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(\zeta)}{\zeta - z} d\zeta + O(\varepsilon) - f(z) \text{ as } \varepsilon \to 0$$

where we used the $n = -1$ case of (1.2) to pass to the last line. \qed
Corollary 1.17. \(A(\Omega) = \mathcal{H}(\Omega) \). In fact, every \(f \in \mathcal{H}(\Omega) \) is represented by a convergent power series on \(D(z_0, r) \) where \(r = \text{dist}(z_0, \partial \Omega) \).

Proof. We already observe that analytic functions are holomorphic. For the converse, we use the previous proposition to conclude that

\[
 f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z_0 - (z - z_0)} d\zeta
 = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z_0} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta
 = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \frac{(z - z_0)^n}{n!}
\]

where the interchange of summation and integration is justified due to uniform and absolute convergence of the series. Thus, we obtain that \(f \) is analytic and, moreover,

\[
 f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n
\]

converges on \(|z - z_0| < \text{dist}(z_0, \partial \Omega) \) with

\[
 f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta
\]

for any \(n \geq 0 \).

In contrast to power series over \(\mathbb{R} \), over \(\mathbb{C} \) there is an explanation for the radius of convergence: \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \) has finite and positive radius of convergence \(R \) iff \(f \notin \mathcal{H}(\Omega) \) for every \(\Omega \) which compactly contains \(D(z_0, R) \).

We immediately obtain a number of corollaries from this.

Corollary 1.18. (a) Let \(f \in \mathcal{H}(\Omega) \) with \(|f(z)| \leq M \) on \(\Omega \). Then

\[
 |f^{(n)}(z)| \leq \frac{Mn!}{\text{dist}(z, \partial \Omega)^n}
\]

for every \(n \geq 0 \) and all \(z \in \Omega \).

(b) If \(f \in \mathcal{H}(\Omega) \cap L^\infty(\Omega) \), then \(f = \text{const} \)

Proof. (a) follows by putting absolute values inside (1.3). For (b) apply (a) to \(\Omega = D(0, R) \) and let \(R \to \infty \).

Part (b) has a famous consequence, namely the fundamental theorem of algebra: Suppose \(P(z) \in \mathbb{C}[z] \) is a polynomial of positive degree and without zero in \(\mathbb{C} \). Then \(f(z) := \frac{1}{P(z)} \in \mathcal{H}(\mathbb{C}) \) and since \(|P(z)| \to \infty \) as \(|z| \to \infty \), \(f \) is evidently bounded. Hence \(f = \text{const} \) and so \(P = \text{const} \) contrary to the
assumption of positive degree. So $P(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Factoring out $z - z_0$ we conclude inductively that P has exactly $\deg(P)$ many complex zeros.

Throughout, for any disk D, the punctured disk D^* denotes D with its center removed.

Corollary 1.19. Let $f \in \mathcal{H}(\Omega)$. Then the following are equivalent:

- $f \equiv 0$
- for some $z_0 \in \Omega$, $f^{(n)}(z_0) = 0$ for all $n \geq 0$
- the set $\{z \in \Omega \mid f(z) = 0\}$ has an accumulation point in Ω

Assume that $f \not\equiv 0$. Then at every point $z_0 \in \Omega$ there exist a positive integer n and disks $D(z_0, \rho), D(f(z_0), r)$ with the property that every $w \in D(f(z_0), r)^*$ has precisely n pre-images under f in $D(z_0, \rho)^*$. In particular, if $f'(z_0) \not\equiv 0$, then f is a local C^∞ diffeomorphism. Finally, every nonconstant holomorphic map is an open map (i.e., it takes open sets to open sets).

Proof. Let $z_n \rightarrow z_0 \in \Omega$ as $n \rightarrow \infty$, where $f(z_n) = 0$ for all $n \geq 1$. Let

$$f(z) = \sum_{k=0}^{\infty} a_k z^k = a_N z^N (1 + O(z - z_0)) \quad \text{as } z \rightarrow z_0$$

locally around z_0 where $N \geq 0$ satisfies $a_N \neq 0$. But then it is clear that f does not vanish on some disk $D(z_0, r)^*$, contrary to assumption. Thus, $f \equiv 0$ locally around z_0. Since Ω is connected, it then follows that $f \equiv 0$ on Ω. This settles the equivalencies.

If f does not vanish identically, let us first assume that $f'(z_0) \neq 0$. We claim that locally around z_0, the map $f(z)$ is a C^∞ diffeomorphism from a neighborhood of z_0 onto a neighborhood of $f(z_0)$ and, moreover, that the inverse map to f is also holomorphic. Indeed, in view of Theorem 1.2, the differential df is invertible at z_0. Hence, by the usual inverse function theorem we obtain the statement about diffeomorphisms. Furthermore, since df is conformal locally around z_0, its inverse is, too and so f^{-1} is conformal and thus holomorphic. If $f'(z_0) = 0$, the there exists some positive integer n with $f^{(n)}(z_0) \neq 0$. But then

$$f(z) = (z - z_0)^n h(z)$$

with $h \in \mathcal{H}(\Omega)$ satisfying $h(z_0) \neq 0$. By Proposition 1.15 we can write $h(z) = (g(z))^n$ for some $g \in \mathcal{H}(U)$ where U is a neighborhood of z_0 and $g(z_0) \neq 0$. Thus, $f(z) = ((z - z_0) g(z))^n$. Finally, by the preceding analysis of the $n = 1$ case we conclude that $(z - z_0) g(z)$ is a local diffeomorphism which implies that f has the stated n-to-one mapping property. The openness is now also evident. \hfill \Box

The open mapping part of Corollary 1.19 has an important implication known as the **maximum principle**.

Corollary 1.20. Let $f \in \mathcal{H}(\Omega)$. If there exists $z_0 \in \Omega$ with $|f(z)| \leq |f(z_0)|$ for all $z \in \Omega$, then $f = \text{const}$.
Proof. If f is not constant, then $f(\Omega)$ is open contradicting that $f(z_0) \in \partial f(\Omega)$, which is required by $|f(z)| \leq |f(z_0)|$ on Ω.

To conclude this chapter, we present Morera’s theorem (a kind of converse to Cauchy) and (conjugate) harmonic functions. Especially the latter is one of the central tools of complex analysis and Riemann surfaces. We begin with Morera’s theorem.

Theorem 1.21. Let $f \in C(\Omega)$. If

$$\oint_{\partial T} f(z) \, dz = 0 \quad \forall \, T \subset \Omega$$

where T is a triangle, then $f \in \mathcal{H}(\Omega)$.

Proof. The idea is simply to find a local holomorphic primitive of f. Thus, assume $D(0, r) \subset \Omega$ and set

$$F(z) := \int_0^z f(\zeta) \, d\zeta = z \int_0^1 f(tz) \, dt$$

for all $|z| < r$. Then by our assumption, for $|z| < r$ and h small,

$$\frac{F(z + h) - F(z)}{h} = \int_0^1 f(z + ht) \, dt \to f(z)$$

as $h \to 0$. This shows that $F \in \mathcal{H}(D(0, r))$ and therefore also $F' = f \in \mathcal{H}(D(0, r))$. Hence $f \in \mathcal{H}(\Omega)$ as desired.

Next, we introduce harmonic functions.

Definition 1.22. A function $u : \Omega \to \mathbb{C}$ is called harmonic iff $u \in C^2(\Omega)$ and $\Delta u = 0$.

Typically, harmonic functions are taken to be real-valued but there is no need to make this restriction in general. The following result explain the relevance of harmonic functions for complex analysis.

Proposition 1.23. If $f \in \mathcal{H}(\Omega)$ and $f = u + iv$, then u, v are harmonic in Ω.

Proof. First, $u, v \in C^\infty(\Omega)$. Second, by the Cauchy–Riemann equations,

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0, \quad v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0$$

as claimed.

This motivates the following definition.

Definition 1.24. Let u be harmonic on Ω and real–valued. We say that v is the harmonic conjugate of u iff v is harmonic and real–valued on Ω and $u + iv \in \mathcal{H}(\Omega)$.
Let us first note that a harmonic conjugate, if it exists, is unique up to constants: indeed, if not, then we would have a real-valued harmonic function \(v \) on \(\Omega \) so that \(iv \in \mathcal{H}(\Omega) \). But from the Cauchy–Riemann equations we would then conclude that \(\nabla v = 0 \) or \(v = \text{const} \) by connectedness of \(\Omega \).

This definition of course presents us with the question whether every harmonic function on a region of \(\mathbb{R}^2 \) has a harmonic conjugate function. The classical example for the failure of this is \(u(z) = \log |z| \) on \(\mathbb{C}^* \); the unique harmonic conjugate \(v \) with \(v(1) = 0 \) would have to be the polar angle which is not harmonic on \(\mathbb{C}^* \). However, in view of Proposition 1.15 it is on every simply connected subdomain of \(\mathbb{C}^* \). As the following proposition explains, this is a general fact.

Proposition 1.25. Let \(\Omega \) be simply connected and \(u \) harmonic on \(\Omega \). Then \(u = \text{Re}(f) \) for some \(f \in \mathcal{H}(\Omega) \) and \(f \) is unique up to an imaginary constant.

Proof. We already established the uniqueness property. To obtain existence, we need to solve the Cauchy–Riemann system. In other words, we need to find a potential \(v \) to the vector field \((-u_y, u_x) \) on \(\Omega \), i.e., \(\nabla v = (-u_y, u_x) \). If \(v \) exists, then it is clearly \(C^2(\Omega) \) and

\[
\Delta v = -u_{yx} + u_{xy} = 0
\]

hence \(v \) harmonic. Define

\[
v(z) := \int_{z_0}^{z} -u_y \, dx + u_x \, dy
\]

where the line integral is along a curve connecting \(z_0 \) to \(z \) which consists of finitely many line segments, say. If \(\gamma \) is a closed curve of this type in \(\Omega \), then by Green’s theorem,

\[
\oint_{\gamma} -u_y \, dx + u_x \, dy = \iint_{U} (u_{yy} + u_{xx}) \, dxdy = 0
\]

where \(\partial U = \gamma \) (this requires \(\Omega \) to be simply connected). So the line integral defining \(v \) does not depend on the choice of curve and \(v \) is therefore well-defined on \(\Omega \). Furthermore, as usual one can check that \(\nabla v = (-u_y, u_x) \) as desired. \(\square \)

From this, we can easily draw several conclusions about harmonic functions.

Corollary 1.26. Let \(u \) be harmonic on \(\Omega \). Then \(u \in C^\infty(\Omega) \), \(u \) satisfies the mean-value property

\[
u(z_0) = \int_0^1 u(z_0 + re^{2\pi i t}) \, dt \quad \forall r < \text{dist}(z_0, \partial \Omega)
\]

and \(u \) obeys the maximum principle: if \(u \) attains a local maximum or minimum in \(\Omega \), then \(u = \text{const} \). In particular, if \(u \in C(\bar{\Omega}) \), then

\[
\min_{\partial \bar{\Omega}} u \leq u(z) \leq \max_{\partial \bar{\Omega}} u \quad \forall z \in \Omega
\]

where equality can be attained only if \(u = \text{const} \).
Proof. Let $U \subset \Omega$ be simply connected, say a disk. By Proposition 1.25, $u = \text{Re} (f)$ where $f \in \mathcal{H}(U)$. Since $f \in C^{\infty}(U)$, so is u. Moreover,

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} \, dz = \int_{0}^{1} f(z_0 + re^{2\pi it}) \, dt$$

Passing to the real part proves (1.4). For the maximum principle, suppose that u attains a local extremum on some disk in Ω. Then it follows from (1.4) that u has to be constant on that disk. The reader will easily verify that a locally constant function is necessarily globally constant and we are done. \qed

Let us apply the procedure of the proof to Proposition 1.25 to $u(z) = \log |z|$ on \mathbb{C}^*. Then, with $\gamma_r(t) = re^{it}$,

$$\oint_{\gamma_r} -u_y \, dx + u_x \, dy = \int_{0}^{2\pi} (\sin^2(t) + \cos^2(t)) \, dt = 2\pi$$

This is essentially the same calculation as (1.2) with $n = -1$. Indeed, on the one hand, the differential form $\omega = -\frac{y}{r^2} \, dx + \frac{x}{r^2} \, dy$ pulls back to any circle as the form $d\theta$ — this of course explains the appearance of 2π. On the other hand, the local primitive of $\frac{1}{z}$ is (any branch of) $\log z$. So integrating over a loop that encircles the origin once we create a jump by 2π. This motivates the following definition.

Lemma 1.27. Let $\gamma : [0,1] \to \mathbb{C}$ be a closed curve. Then for any $z_0 \in \mathbb{C} \setminus \gamma([0,1])$ the integral

$$n(\gamma; z_0) := \frac{1}{2\pi i} \oint_{\gamma} \frac{dz}{z - z_0}$$

is an integer. It is called the index or winding number of γ relative to z_0. It is constant on each component of $\mathbb{C} \setminus \gamma([0,1])$ and vanishes on the unbounded component.

Proof. Let

$$g(t) := \int_{0}^{t} \frac{\gamma'(s) - z_0}{\gamma(s) - z_0} \, ds$$

Then

$$\frac{d}{dt} \left(e^{-g(t)}(\gamma(t) - z_0) \right) = -e^{-g(t)}\gamma'(t) + e^{-g(t)}\gamma'(t) = 0$$

which implies that

$$e^{-g(0)}(\gamma(1) - z_0) = e^{-g(0)}(\gamma(0) - z_0) = e^{-g(0)}(\gamma(1) - z_0)$$

and thus $e^{-g(0)-g(1)} = 1$; in other words, $g(0) - g(1) \in 2\pi i \mathbb{Z}$ as claimed. To establish the constancy on the components, observe that

$$\frac{d}{dz_0} \oint_{\gamma} \frac{dz}{z - z_0} = \oint_{\gamma} \frac{dz}{(z - z_0)^2} = -\oint_{\gamma} \frac{dz}{z - z_0} \frac{1}{(z - z_0)^2} = 0$$
Finally, on the unbounded component we can let $z_0 \to \infty$ to see that the index vanishes.

This carries over to cycles of the form $c = \sum_{j=1}^{J} n_j \gamma_j$ where each γ_j is a closed curve and $n_j \in \mathbb{Z}$. If $n_j < 0$, then $n_j \gamma_j$ means that we take $|n_j|$ copies of γ_j with the opposite orientation. The index of a cycle c relative to a point z_0 not on the cycle is simply

$$n(c; z_0) := \sum_{j=1}^{J} n_j n(\gamma_j; z_0)$$
Chapter 2

From \(z \) to the Riemann mapping theorem: some finer points of basic complex analysis

We now use the notion of winding number to formulate a more general version of Cauchy’s formula. We say that \(z \in c \) where \(c \) is a cycle iff \(z \) lies on one of the curves that make up the cycle. In general, we write \(c \) both for the cycle as well as the points on it. In what follows, we shall call a cycle \(c \) in a region \(\Omega \) a 0-homologous cycle in \(\Omega \) or relative to \(\Omega \), iff \(n(c; z) = 0 \) for all \(z \in \mathbb{C} \setminus \Omega \).

Theorem 2.1. Let \(c \) be a 0-homologous cycle in \(\Omega \). Then

\[
n(c; z_0) f(z_0) = \frac{1}{2\pi i} \oint_c \frac{f(z)}{z - z_0} \, dz
\]

for all \(z_0 \in \Omega \setminus c \).

Proof. Define

\[
\phi(z, w) := \begin{cases}
\frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \in \Omega \\
 f'(z) & \text{if } z = w \in \Omega
\end{cases}
\]

Then by analyticity, \(\phi(z, w) \) is analytic in both variables and jointly continuous. The set

\[
\Omega' := \{w \in \mathbb{C} \setminus c \mid n(\gamma; w) = 0\}
\]

is open, \(\Omega' \cup \Omega = \mathbb{C} \), and the function

\[
g(z) := \begin{cases}
\oint_c \phi(z, w) \, dw & \text{if } z \in \Omega \\
\int_{\Omega'} \frac{f(w)}{w - z} \, dw & \text{if } z \in \Omega'
\end{cases}
\]

21
is well-defined and \(g \in H(C) \); for the former, note that for any \(z \in \Omega \),
\[
\oint_c \phi(z, w) \, dw = \oint_c \frac{f(w) - f(z)}{w - z} \, dw = \oint_c f(w) \, dw - 2\pi i f(z) n(c; z) \tag{2.1}
\]
with \(n(c; z) = 0 \) for all \(z \in \Omega' \cap \Omega \). The analyticity of \(g \) on \(\Omega' \) is clear, whereas on \(\Omega \) one can use Fubini and Morera’s theorem to verify that \(g \) is holomorphic. Finally, since \(g(z) \to 0 \) as \(|z| \to \infty \), we see that \(g \equiv 0 \) on \(C \). The theorem now follows from (2.1).

We can state the following more general version of Cauchy’s Theorem 1.14. As the reader will easily verify, it is equivalent to Theorem 2.1.

Corollary 2.2. With \(c \) and \(\Omega \) as in Theorem 2.1,
\[
\oint_c f(z) \, dz = 0 \tag{2.2}
\]
for all \(f \in H(\Omega) \). In particular, if \(\Omega \) is simply connected, then (2.2) holds for all cycles in \(\Omega \) and \(f \in H(\Omega) \).

Proof. Apply the previous theorem to \(h(z) = (z - z_0) f(z) \) where \(z_0 \in \Omega \setminus c \). As for the second statement, it uses that \(C \setminus \Omega \) is connected if \(\Omega \) is simply connected (and conversely). But then \(n(\gamma; z) = 0 \) for all \(z \in C \setminus \Omega \) by Lemma 1.27, and we are done.

The final formulation of Cauchy’s theorem is the homotopy invariance. We say that two \(C^1 \)-cycles \(c_1 \) and \(c_2 \) are **homotopic** iff each closed curve from \(c_1 \) (counted with multiplicity) is \(C^1 \)-homotopic to exactly one closed curve from \(c_2 \).

Theorem 2.3. Let \(c_1 \) and \(c_2 \) be two cycles in \(\Omega \) that are \(C^1 \)-homotopic. Then
\[
\oint_{c_1} f(z) \, dz = \oint_{c_2} f(z) \, dz
\]
for all \(f \in H(\Omega) \). In particular, if \(c \) is homotopic to a 0-cycle (a some of points), then \(\oint_c f(z) \, dz = 0 \) for all \(f \in H(\Omega) \).

Proof. By summation, it suffices to consider closed curves instead of cycles. Triangulate the homotopy and make the triangles small enough such that they fit into a disk in \(\Omega \). Then the result follows from Corollary 2.2 by adding up the integrals over the triangles.

This is a most important statement as it implies, for example, that the winding number is homotopy invariant; in particular, if a cycle \(c \subset \Omega \) is 0–homologous relative to \(\Omega \), then any cycle homotopic to \(c \) relative to \(\Omega \) is also 0–homologous. Note, however, that \(\gamma_1 \) and \(\gamma_2 \) can be homologous without being homotopically equivalent.

We remark that Theorem 2.3 can be done with continuous curves instead of \(C^1 \). For this, one needs to define the integral along a continuous curve
via analytic continuation of primitives. In that case, Theorem 2.3 becomes a

corollary of the monodromy theorem, see Theorem 2.15 below. We now consider

isolated singularities of holomorphic functions.

Definition 2.4. Suppose \(f \in \mathcal{H}(\Omega \setminus \{z_0\}) \) where \(z_0 \in \Omega \). Then \(z_0 \) is called an

isolated singularity of \(f \). We say that \(f \) is removable if \(f \) can be assigned a

complex value at \(z_0 \) that makes \(f \) holomorphic on \(\Omega \). We say that \(z_0 \) is a pole of \(f \) provided \(f(z) \to \infty \) as \(z \to z_0 \). Otherwise, \(f \) is called an essential singularity.

An example of an isolated singularity at \(z = 0 \) would be \(\frac{1}{z} \) (which has a pole at \(0 \)), whereas \(\frac{1}{\sqrt{z}} \) does not have an isolated singularity there (or anywhere).

An example of an essential singularity at zero is \(e^{\frac{1}{z}} \).

We will now give some criteria for these various types to happen. As usual, \(D^* \) denotes a disk \(D \) with the center removed.

Proposition 2.5. Suppose \(f \in \text{Hol}(\Omega \setminus \{z_0\}) \). Then there is the following

mutually exclusive trichotomy:

- \(z_0 \) is removable iff \(\lim_{z \to z_0} (z - z_0)f(z) = 0 \)
- \(z_0 \) is a pole iff there exists a positive integer \(n \geq 1 \) and \(h \in \mathcal{H}(\Omega) \) with \(h(z_0) \neq 0 \) such that \(f(z) = \frac{h(z)}{(z - z_0)^n} \)
- for every \(\varepsilon > 0 \), the set \(f(D(z_0, \varepsilon)^*) \) is dense in \(\mathbb{C} \)

Proof. Suppose \(\lim_{z \to z_0} (z - z_0)f(z) = 0 \). Then \(g(z) := (z - z_0)f(z_0) \in \mathcal{C}(\Omega) \) and from Morera’s theorem it follows that \(g \in \mathcal{H}(\Omega) \). To apply Morera’s theorem, distinguish the cases where \(z_0 \) lies outside the triangle, the boundary of the triangle, or is in the interior of the triangle.

Suppose that \(z_0 \) is a pole. Then by the previous criterium, \(g(z) := \frac{1}{f(z)} \) has a removable singularity at \(z_0 \) (in fact, \(g(z) \to 0 \) as \(z \to z_0 \)). Hence, \(g(z) = (z - z_0)\tilde{g}(z) \) where \(\tilde{g} \in \mathcal{H}(\Omega) \) and \(\tilde{g}(z_0) \neq 0 \). This implies that \(f(z) = \frac{h(z)}{(z - z_0)^n} \) where \(h(z_0) \neq 0 \) and \(h \in \mathcal{H}(\Omega) \). Conversely, suppose that \(f(z) \) has this form. Then \(f(z) \to \infty \) as \(z \to z_0 \) (which is equivalent to \(|f(z)| \to \infty \) as \(z \to z_0 \)) and \(z_0 \) is a pole of \(f \).

Finally, suppose \(f(D(z_0, \varepsilon)) \cap D(w_0, \delta) = \emptyset \) for some \(\varepsilon > 0 \) and \(w_0 \in \mathbb{C}, \delta > 0 \). Then \(\frac{1}{f(z) - w_0} \in \mathcal{H}(D(z_0, \varepsilon)) \) has a removable singularity at \(z_0 \) which then further implies that \(f(z) \) has a removable singularity or a pole at \(z_0 \).

Let \(n \) be the integer arising in the previous characterization of a pole; then we say that the order of the pole at \(z_0 \) is \(-n \).

Definition 2.6. We say that \(f \) is a meromorphic function on \(\Omega \) iff there exists a discrete set \(\mathcal{P} \subset \Omega \) such that \(f \in \mathcal{H}(\Omega \setminus \mathcal{P}) \) and such that each point in \(\mathcal{P} \) is a pole of \(f \). We denote the field of meromorphic functions by \(\mathcal{M}(\Omega) \).

An indispensable tool in the study of isolated singularities are the Laurent series.
Proposition 2.7. Suppose that \(f \in \mathcal{H}(\mathcal{A}) \) where
\[
\mathcal{A} = \{ r_1 < |z_0| < r_2 \}, \quad 0 \leq r_1 < r_2 \leq \infty
\]
is an annulus. Then there exist unique \(a_n \in \mathbb{C} \) such that
\[
f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n
\]
where the series converges absolutely on \(\mathcal{A} \) and uniformly on compact subsets of \(\mathcal{A} \). Furthermore,
\[
a_n = \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{(z-z_0)^{n+1}} \, dz \tag{2.3}
\]
for all \(n \in \mathbb{Z} \) and any \(r_1 < r < r_2 \).

Proof. Fix \(z \in \Omega \). Let \(c \) be the cycle defined in \(\Omega \) by
\[
c = -\gamma_{r_1} + \gamma_{r_2} + \eta
\]
where \(\gamma_r(t) := z_0 + re^{2\pi it} \), \(\eta(t) := z + \varepsilon e^{2\pi it} \), and \(r_1 < r_1' < |z-z_0| < r_2 < r_2' \) and \(\varepsilon \) is small. Then \(n(c;w) = 0 \) for all \(w \in \mathbb{C} \setminus \mathcal{A} \) and \(n(c;z) = 0 \). Hence, by the Cauchy formula of Theorem 2.1,
\[
\frac{1}{2\pi i} \oint_{\gamma_r} \frac{f(w)}{w-z} \, dw = 0
\]
Now proceed as in the proof of Corollary 1.17 with \(\gamma_{r_2} \) contributing the \(a_n \), \(n \geq 0 \) as in (2.3), and the inner curve \(\gamma_{r_1'} \) contributing \(a_n \) with \(n < 0 \) as in (2.3). The absolute and uniform convergence follows as well. Note that these formulas, as well as the uniqueness, follow from our previous calculation (1.2) (divide the Laurent series by \((z-z_0)^{\ell} \)).

Suppose now that \(r_1 = 0 \) so that \(z_0 \) becomes an isolated singularity. The coefficient \(a_{-1} \) is the most important of all as it has an invariant character (this will only become clear when we discuss differential forms on Riemann surfaces). It is called the residue of \(f \) at \(z_0 \) and denoted by \(\text{res}(f; z_0) \). It is easy to read off from the Laurent series which kind of isolated singularity we are dealing with:

Corollary 2.8. Suppose \(z_0 \) is an isolated singularity of \(f \) and suppose
\[
f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n
\]
is the Laurent expansion of \(f \) around \(z_0 \) convergent on \(0 < |z-z_0| < \delta \) for some \(\delta > 0 \). Then \(z_0 \) is removable iff \(a_n = 0 \) for all \(n < 0 \). It has a pole iff \(a_n = 0 \) for all \(n < n_0 \) (and \(n_0 \) is the order of the pole provided \(a_{n_0} \neq 0 \)). Otherwise, \(z_0 \) is an essential singularity.
Proof. Simply apply Proposition 2.5 to the Laurent series of f at z_0. □

A most useful result of elementary complex analysis is the residue theorem.

Theorem 2.9. Suppose $f \in \mathcal{H}(\Omega \setminus \{z_j\}_{j=1}^J)$. If c is a 0–homologous cycle in Ω, and such that c does not pass through any of the z_j, then

$$\frac{1}{2\pi i} \oint_c f(z) \, dz = \sum_{j=1}^J n(c; z_j) \text{res}(f; z_j) \quad (2.4)$$

Proof. Let $\nu_j := n(c; z_j)$ and define a new cycle

$$c' := c - \sum_{j=1}^J \nu_j \gamma_j, \quad \gamma_j(t) := z_j + \varepsilon e^{2\pi it}$$

where $\varepsilon > 0$ is small. Then $n(c'; w) = 0$ for all $w \in \mathbb{C} \setminus \Omega$ and $n(c'; z_j) = 0$ for all $1 \leq j \leq J$. The residue formula (2.4) now follows from Theorem 2.1 applied to $\Omega \setminus \{z_j\}_{j=1}^J$. □

For many examples of how to use the residue theorem to compute integrals see the Problem 18. We will apply it now to derive the argument principle. To motivate it, consider $f(z) = z^n$ with $n \geq 0$. If $\gamma_r(t) = re^{2\pi it}$ is the circle of radius r around 0, then $f \circ \gamma_r$ has winding number n around 0. Hence, that winding number counts how many zeros of f there are inside of γ_r. If $n < 0$, then we obtain the order of the pole at 0.

Proposition 2.10. Let c be a 0–homologous cycle relative to Ω. If $f \in \mathcal{M}(\Omega)$ is such that no zero or pole of f lie on c, then

$$n(f \circ c ; 0) = \sum_{z : f(z) = 0} n(c; z) - \sum_{\zeta : f(\zeta) = \infty} n(c; \zeta)$$

In other words, the winding number — or increase in the argument — of f along c counts zeros minus poles with multiplicity and weighted by the index of c.

Proof. By definition,

$$n(f \circ c ; 0) = \frac{1}{2\pi i} \oint_{f \circ c} \frac{df}{f} = \frac{1}{2\pi i} \oint_{f \circ c} \frac{f'(z)}{f(z)} \, dz \quad (2.5)$$

If $f(z) = (z - z_0)^n g(z)$ with $g(z_0) \neq 0$ and $g \in \mathcal{H}(\Omega)$, then

$$\text{res}\left(\frac{f'}{f}; z_0\right) = n$$

and the proposition follows by applying the residue theorem to (2.5). □
It is clear that the argument principle gives another — direct — proof of the fundamental theorem of algebra. Combining the homotopy invariance of the winding number (see Theorem 2.3) with the argument principle yields Rouche’s theorem.

Proposition 2.11. Let \(f, g \in \mathcal{H}(\Omega) \cap C^1(\bar{\Omega}) \) and suppose that \(|g| < |f|\) on \(\partial \Omega \). Assume that \(\partial \Omega \) is piecewise \(C^1 \). Then

\[
\# \{ z \in \Omega \mid f(z) = 0 \} = \# \{ z \in \Omega \mid (f + g)(z) = 0 \}
\]

where the zeros are counted with multiplicity.

Proof. The function \(f + sg, 0 \leq s \leq 1 \) is a homotopy between \(f \) and \(f + g \) with the property that Proposition 2.10 applies to each \(s \)-slice. Hence, Rouche’s theorem follows from the homotopy invariance of the winding number. \(\square \)

Rouche’s theorem allows for yet another proof of the fundamental theorem of algebra: If \(P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0 \), then set \(f(z) := z^n \) and \(g(z) := a_{n-1}z^{n-1} + \ldots + a_1z + a_0 \). On \(|z| = R\) with \(R \) very large, \(|f| > |g|\) and Rouche applies.

We now discuss analytic continuation along curves. First, we define a chain of disks along a continuous curve.

Definition 2.12. Suppose \(\gamma : [0, 1] \to \Omega \) is a continuous curve inside a region \(\Omega \). We say that \(D_j = D(\gamma(t_j), r_j) \subset \Omega, 0 \leq j \leq J, \) is a chain of disks along \(\gamma \) in \(\Omega \) iff \(|0 = t_0 < t_1 < t_2 < \ldots < t_N = 1\) and \(\gamma([t_j, t_{j+1}]) \subset D_j \cap D_{j+1} \) for all \(|0 \leq j \leq N - 1|\).

For any \(\gamma \) and \(\Omega \) as in this definition there exists a chain of disks along \(\gamma \) in \(\Omega \) by uniform continuity of \(\gamma \). Next, we analytically continue along such a chain.

Definition 2.13. Let \(\gamma : [0, 1] \to \Omega \) be a continuous curve inside \(\Omega \). Suppose \(f \in \mathcal{H}(U) \) and \(g \in \mathcal{H}(V) \) where \(U \subset \Omega \) and \(V \subset \Omega \) are neighborhoods of \(p := \gamma(0) \) and \(q := \gamma(1) \), respectively. Then we say that \(g \) is an analytic continuation of \(f \) along \(\gamma \) iff there exists a chain of disks \(D_j := D(\gamma(t_j), r_j) \) along \(\gamma \) in \(\Omega \) where \(|0 \leq j \leq J| \), and \(f_j \) in \(\mathcal{H}(D_j) \) such that \(f_j = f_{j+1} \) on \(D_j \cap D_{j+1} \) and \(f_0 = f \) and \(f_j = g \) locally around \(p \) and \(q \), respectively.

In what follows, the only relevant information about \(f \) and \(g \) is their definition locally at \(p \) and \(q \), respectively, and not their domains of definition. This is equivalent to saying that we identify \(f \) and \(g \) with their Taylor series around \(p \) and \(q \), respectively. As expected, the analytic continuation of \(f \) along \(\gamma \) is unique whenever it exists. In particular, it does not depend on the chain of disks along \(\gamma \), but only on \(\gamma \) itself. This follows from the uniqueness theorem, see Corollary 1.19 above.

Lemma 2.14. The analytic continuation \(g \) of \(f \) along \(\gamma \) as in Definition 2.13 only depends on \(f \) and \(\gamma \), but not on the specific choice of the chain of circles. In particular, it is unique.
Proof. Suppose that D_j and \bar{D}_k are two different chains of disks along γ with underlying partitions $\{t_j\}_{j=1}^J$ and $\{s_k\}_{k=1}^K$, respectively. Denote the chain of analytic functions defined on these disks by f_j and g_k. Then we claim that for any j,k with $t_{j-1} \leq s_k \leq t_j,$

$$f_j = g_k \text{ on } D_j \cap \bar{D}_k$$

Applying this claim to the end point of γ yields the desired uniqueness. To prove the claim, one uses induction on $j+k$ and the uniqueness theorem. As an exercise, supply the details. \hfill \Box

We have already encountered a special case of this: suppose that $f \in \mathcal{H}(\Omega)$. Then locally around every point in Ω there exists a primitive. Any such primitive can be analytically continued along an arbitrary C^1-curve $\gamma : [0,1] \to \Omega$ by integration:

$$F(z) := \int_\gamma f(\xi) \, d\xi$$

where $\gamma(1) = z$ and $\gamma(0) = z_0$ is kept fixed. This procedure, however, does not necessarily lead a “global” primitive $F \in \mathcal{H}(\Omega)$. Our favorite example $\Omega = \mathbb{C}^*$ and $f(z) = \frac{1}{z}$ shows otherwise. On the other hand, it is clear from Theorem 2.3 that we do obtain a global F if Ω is simply connected. This holds in general for analytic continuations and is known as the monodromy theorem.

Theorem 2.15. Suppose γ_0 and γ_1 are two homotopic curves (relative to some region $\Omega \subset \mathbb{C}$) with the same initial point p and end point q. Let U be a neighborhood of p and assume further that $f \in \mathcal{H}(U)$ can be analytically continued along every curve of the homotopy. Then the analytic continuations of f along γ_j, $j = 0,1$ agree locally around q.

Proof. Let $H : [0,1]^2 \to \Omega$ be the homotopy between γ_0 and γ_1 which fixes the initial and endpoints. Thus $H = H(t,s)$ where $\gamma_0(t) = H(t,0)$ and $\gamma_1(t) = H(t,1)$, respectively. Denote the continuation of f along $H(t,s)$ by g_s. We need to prove that the Taylor series of g_s around q does not depend on s. It suffices to prove this locally in s. The idea is of course to change s so little that essentially the same chain of disks can be used. The details are as follows: let $\gamma_s(t) := H(t,s)$, fix any $s_0 \in [0,1]$ and suppose $\{D_j\}_{j=1}^J$ is a chain of circles along γ_{s_0} with underlying partition $0 = t_0 < t_1 < \ldots < t_N = 1$ and functions f_j on D_j defining the analytic continuation of f along γ_{s_0}. We claim the following: let $D_j(s)$ denote the largest disk centered at $\gamma_s(t_j)$ which is contained in D_j. There exists $\varepsilon > 0$ such that for all $s \in [0,1]$, $|s - s_0| < \varepsilon$, the $D_j(s)$ form a chain of disks along γ_s. In that case, we can use the same f_j which proves that for all $|s - s_0| < \varepsilon$, the g_s agree locally around q. It remains to prove the claim. For this, we use the uniform continuity of the homotopy H to conclude that there exists $\varepsilon > 0$ so that for all $|s - s_0| < \varepsilon$, each disk $D_j(s)$ contains the ε-neighborhood of $\gamma_s([t_{j-1},t_j])$ for each $1 \leq j \leq J$. This of course guarantees that $\{D_j(s)\}_{j=1}^J$ is a chain of disks along γ_s inside Ω as desired. \hfill \Box
In particular, since any two curves with the same initial and end points are homotopic in a simply connected region, we conclude that under the assumption of simple connectivity analytic continuations are always unique. This of course implies all previous results of this nature (the existence of the logarithm etc.). Any reader familiar with universal covers should be reminded here of the homeomorphism between a simply connected manifold and its universal cover. Making this connection between the monodromy theorem and the universal cover requires the notion of a Riemann surface to which we turn in Chapter 4.

Any domain Ω carries analytic functions that cannot be continued beyond any portion of $\partial \Omega$. Simply let $\{z_n\}_{n=1}^\infty$ be dense in $\partial \Omega$ and define

$$f(z) = \sum_{n=1}^\infty 2^{-n} \frac{1}{z - z_n}$$

which is analytic on Ω. It is clear that a power series with finite and positive radius of convergence cannot be analytically continued across its entire circle of convergence. A natural class of power series with $R = 1$ and which cannot be continued across any portion of $|z| = 1$ are the gap series, see Problem ??.

The next topic we address is that of convergence and compactness of sequences of holomorphic functions. The concept of complex differentiability is so rigid that it survives under uniform limits – this is no surprise as Morera’s theorem characterizes it by means of the vanishing of integrals.

Lemma 2.16. Suppose $\{f_n\}_{n=1}^\infty \subset H(\Omega)$ converges uniformly on compact subset of Ω to a function f. Then $f \in H(\Omega)$ and $f_n^{(k)} \to f^{(k)}$ uniformly on compact subset of Ω for each $k \geq 1$. Furthermore, suppose that

$$\sup_{n \geq 1} \# \{z \in \Omega \mid f_n(z) = w\} \leq N < \infty$$

Then either $f \equiv w$ in Ω or

$$\# \{z \in \Omega \mid f(z) = w\} \leq N$$

The cardinalities here include multiplicity.

Proof. The first assertion is immediate from Morera’s theorem. The second one follows from Cauchy’s formula

$$f_n^{(k)}(z_0) = \frac{k!}{2\pi i} \oint_{|z - z_0| = r} \frac{f_n(z)}{(z - z_0)^{k+1}} \, dz \quad (2.6)$$

whereas the third is a consequence of Rouche’s theorem: let

$$\{z \in \Omega \mid f(z) = w\} = \{z_j\}_{j=1}^J$$

with $J < \infty$. Then $|f(z)| > \delta$ on each circle $|z - z_j| = \varepsilon$ where δ and ε are sufficiently small. Now let n_0 be so large that $|f - f_n| < \delta$ on $|z - z_j| = \varepsilon$ for all $n \geq n_0$. By Rouche, it follows that f has as many zeros counted with multiplicity as each f_n with $n \geq n_0$ inside these disks and we are done. \qed
The following proposition shows that Lemma 2.16 applies to any bounded family \{f_n\}_{n=1}^\infty \subset \mathcal{H}(\Omega), or at least subsequences thereof. This is the normal family theorem.

Proposition 2.17. Suppose \{f_\alpha\}_{\alpha \in A} \subset \mathcal{H}(\Omega) is a uniformly bounded family on compact subsets of \Omega (or equivalently, locally uniformly bounded) — such a family is called normal. Then there exists a sequence \{f_n\} in \mathcal{F} that converges uniformly on compact subsets of \Omega.

Proof. By (2.6), we see that \hat{f}^{(k)}_\alpha with \alpha \in A is uniformly bounded on compact subsets of \Omega for all \(k \geq 0\). By the cases \(k = 0\) and \(k = 1\), we see that \{f_\alpha\}_{\alpha \in A} is in particular equicontinuous and bounded. By Arzela-Ascoli and a diagonal subsequence argument we thus construct a subsequence converging uniformly on all compact subsets of \Omega as desired. \(\square\)

Let us now use this machinery to answer some fundamental and classical questions in complex analysis:

- Can we find \(f \in \mathcal{M}(\mathbb{C})\) so that \(f\) has poles exactly at a prescribed sequence \(\{z_n\}\) that does not cluster in \(\mathbb{C}\), and such that \(f\) has prescribed principal parts at these poles (this refers to fixing the entire portion of the Laurent series with negative powers at each pole)?

- Can we find \(f \in \mathcal{H}(\mathbb{C})\) such that \(f\) has zeros exactly at a given sequence \(\{z_n\}\) that does not cluster with prescribed orders \(\nu_n \geq 1\)?

In both cases the answer is “yes”, as we can easily see now.

Theorem 2.18 (Mittag Leffler). Given \(\{z_n\}_{n=1}^N\) with \(|z_n| \to \infty\) if \(N = \infty\), and polynomials \(P_n\) with positive degrees there exists \(f \in \mathcal{M}(\mathbb{C})\) so that \(f\) has poles exactly at \(z_n\) and

\[f(z) - P_n\left(\frac{1}{z - z_n}\right)\]

is analytic around \(z_n\) for each \(1 \leq n \leq N\).

Proof. If \(N\) is finite, there is nothing to do: simply define

\[f(z) := \sum_{n=1}^N P_n\left(\frac{1}{z - z_n}\right)\]

If \(N = \infty\), then we need to guarantee convergence of this series on compact sets by making at most a holomorphic error. Let \(D_n := \{ |z| < |z_n|/2 \}\) and \(T_n(z)\) be the Taylor polynomial of \(P_n\left(\frac{1}{z - z_n}\right)\) of sufficiently high degree so that

\[\sup_{z \in D_n} \left| P_n\left(\frac{1}{z - z_n}\right) - T_n(z) \right| < 2^{-n}\]
CHAPTER 2. BASIC COMPLEX ANALYSIS II

Then

\[
\sum_{n=1}^{\infty} \left[P_n \left(\frac{1}{z-z_n}\right) - T_n(z)\right]
\]

converges on compact subsets of \(\mathbb{C} \setminus \{z_n\}_{n=1}^{\infty} \) and thus defines a holomorphic function there. Moreover, the \(z_n \) are isolated singularities, in fact poles with \(P_n \left(\frac{1}{z-z_n}\right) \) as principal part.

As an example of this procedure, let \(f(z) = \frac{\pi^2}{\sin^2(\pi z)} \). Then \(f \in \mathcal{M}(\mathbb{C}) \) with poles \(z_n = n \in \mathbb{Z} \) and principal part \(h_n(z) = (z - n)^{-2} \). Clearly,

\[
\sum_{n \in \mathbb{Z}} h_n(z)
\]

converges uniformly on \(\mathbb{C} \setminus \mathbb{Z} \) to a function \(s(z) \) holomorphic there. Moreover, \(s \) and \(g := f - s \) are both 1–periodic. In addition, \(g \in \mathcal{H}(\mathbb{C}) \). Finally, in the strip \(0 \leq \Re z \leq 1 \) we see that both \(f \) and \(s \) are uniformly bounded; in fact, they both tend to zero as \(|\Im z| \to \infty \). Hence, \(g \in \mathcal{H}(\mathbb{C}) \cap L^\infty(\mathbb{C}) \) is bounded and in fact vanishes identically. In conclusion,

\[
\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}
\]

Setting \(z = \frac{1}{2} \) shows that

\[
\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} \quad \text{and thus} \quad \frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}
\]

As another example, consider \(f(z) = \pi \cot(\pi z) \). It has simple poles at each \(n \in \mathbb{Z} \) with principal parts \(h_n(z) = \frac{1}{z-n} \). In this case we do require the \(T_n \) from the proof of Theorem 2.18:

\[
s(z) := \frac{1}{z} + \sum_{n=-\infty \atop n \neq 0}^{\infty} \left[\frac{1}{z-n} + \frac{1}{n} \right] = \frac{1}{z} + \sum_{n=1}^{\infty} \left[\frac{1}{z-n} + \frac{1}{z+n} \right]
\]

\[
= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}
\]

Clearly, \(g := f - s \) is 1-periodic and analytic on \(\mathbb{C} \). A simple estimate of both \(f \) and \(s \) reveals that \(g \) is bounded. Hence \(g = \text{const expanding around } z = 0 \) shows that in fact \(g \equiv 0 \). We have thus obtained the partial fraction decomposition

\[
\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \quad (2.7)
\]

Let us now turn to the second question, i.e, the construction of an entire function with prescribed zeros.
Definition 2.19. Given \(\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}^* \), we say that \(\prod_{n=1}^{\infty} z_n \) converges, iff
\[
P_N := \prod_{n=1}^{N} z_n \to P_\infty \in \mathbb{C}^*
\]
We say that this product converges absolutely iff \(\sum_{n=1}^{\infty} |1 - z_n| < \infty \). We shall also allow \(\prod_{n=1}^{\infty} z_n \) with all but finitely many \(z_n \neq 0 \). In that case, this product is defined to be 0 provided the infinite product with all \(z_n = 0 \) removed converges in the previous sense.

Here is an elementary lemma whose proof we leave to the reader. \(\log z \) denotes the principal branch of the logarithm, i.e.,
\[
\log z := \log |z| + i \arg z, \quad \arg z \in [0, 2\pi)
\]

Lemma 2.20. Let \(\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}^* \). Then \(\prod_{n=1}^{\infty} z_n \) converges (absolutely) iff \(\sum_{n=1}^{\infty} \log z_n \) converges (absolutely). The notion of uniform convergence relative to some complex parameter is also reduced to the series.

We can now easily answer the question concerning entire functions with prescribed zeros.

Theorem 2.21 (Weierstrass). Let \(\{z_n\}_n \subset \mathbb{C} \) be a sequence \(Z \) (finite or infinite) that does not cluster in \(\mathbb{C} \). Then there exists an entire function \(f \) that vanishes exactly at \(z_n \) to the order which equals the multiplicity of \(z_n \) in \(Z \).

Proof. We set
\[
f(z) := z^\nu \prod_{n} \left(1 - \frac{z}{z_n}\right) \exp \left(\sum_{\ell=1}^{m_n} \frac{1}{\ell} \left(\frac{z}{z_n}\right)^\ell\right) \quad (2.8)
\]
where \(\nu \) is the number of times 0 appears in \(Z \), whereas \(\prod \) is the product with all \(z_n = 0 \) deleted. The \(m_n \geq 0 \) are integers chosen so that
\[
\left| \log \left(1 - \frac{z}{z_n}\right) + \sum_{\ell=1}^{m_n} \frac{1}{\ell} \left(\frac{z}{z_n}\right)^\ell \right| < 2^{-n}
\]
on \(|z| < \frac{1}{2} |z_n| \). Given any \(R > 0 \) all but finitely many \(z_n \) satisfy \(|z_n| \geq 2R \). By our construction, the (tail of the) infinite product converges absolutely and uniformly on every disk to an analytic function. In particular, the zeros of \(f \) are precisely those of the factors, and we are done. \(\Box \)

As in the case of the Mittag-Leffler theorem, one typically applies the Weierstrass theorem to give entire functions. Here is an example: let \(f(z) = \pi \sin(\pi z) \) with zero set \(Z = \mathbb{Z} \). The zeros are simple. In view of (2.8), we define
\[
g(z) := z \prod_{n \in \mathbb{Z}} \left(1 - \frac{z}{n}\right) e^{\frac{z}{n}} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)
\]
There exists an entire function h such that $f(z) = g(z)e^{h(z)}$. In other words,

$$f(z) = \sin(\pi z) = z e^{h(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$

$$f'(z) = \pi \cot(\pi z) = h'(z) + \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$$

But then, by (2.7), $h' \equiv 0$ or $h = \text{const}$. By expanding everything around $z = 0$ we conclude that $e^h = \pi$ and we have shown that

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$

Setting $z = \frac{1}{2}$ in particular yields the Wallis formula

$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{(2n)^2}{(2n + 1)(2n - 1)}$$

We remark that both the Mittag–Leffler and Weierstrass theorems remain valid on regions $\Omega \subset \mathbb{C}$, see Conway [4], for example.

We now present the famous and fundamental Riemann mapping theorem. Later, it will become part of the much wider uniformization theory of Riemann surfaces.

Theorem 2.22. Let $\Omega \subset \mathbb{C}$ be simply connected and $\Omega \neq \mathbb{C}$. Then there exists a conformal homeomorphism $f : \Omega \to \mathbb{D}$ onto the unit disk \mathbb{D}.

Proof. We first find such a map into \mathbb{D}. Then we will “maximize” all such f to select the desired homeomorphism. We may assume that $0 \notin \Omega$. By Proposition 1.15 there exists a branch of $\sqrt{\cdot}$ on Ω which we denote by ρ. Let $\Omega := \rho(\Omega)$. Then ρ is one-to-one and if $w \in \Omega$, then $-w \notin \overline{\Omega}$. Indeed, otherwise $\rho(z_1) = w = -\rho(z_2)$ with $z_1, z_2 \in \Omega$ would imply that $z_1 = z_2$ or $w = -w = 0$ contrary to $0 \notin \Omega$. Since Ω is open, we deduce that

$$\overline{\Omega} \cap D(w, \delta) = \emptyset$$

for some $w \in \mathbb{C}$ and $\delta > 0$. Now define $f(z) := \frac{\delta}{\rho(z) - w}$ and observe that f is one-to-one and into \mathbb{D}. Henceforth, we assume that $\Omega \subset \mathbb{D}$ and also that $0 \in \Omega$ (dilate and translate). Define

$$\mathcal{F} := \{f : \Omega \to \mathbb{D} \mid f \in \mathcal{H}(\Omega) \text{ is one-to-one and } f(0) = 0, f'(0) > 0\}$$

Then $\mathcal{F} \neq \emptyset$ (since $\text{id}_\Omega \in \mathcal{F}$) and \mathcal{F} is a normal family, see Proposition 2.17. We claim that

$$s_0 := \sup_{f \in \mathcal{F}} f'(0) > 0$$
is attained by some \(f \in F \). Indeed, let \(f_n'(0) \to s_0 \) with \(f_n \in F \) and \(f_n \to f_\infty \in H(\Omega) \) uniformly on compact subsets of \(\Omega \). Then \(f_\infty(0) = 0, f_\infty'(0) > 0 \) and \(f_\infty : \Omega \to \mathbb{D} \) by the maximum principle and the open mapping theorem (obviously, \(f_\infty \) is not constant). Finally, from Lemma (2.16) we infer that \(f_\infty \) is also one-to-one and thus \(f_\infty \in F \) as claimed.

It remains to prove that \(f_\infty \) is onto \(\mathbb{D} \). Suppose not and let \(w_0 \in \mathbb{D} \setminus f_\infty(\Omega) =: \Omega_1 \). Pick \(g_1 \in \text{Aut}(\mathbb{D}) \) (a Möbius transform) such that \(g_1(w_0) = 0 \) and let \(\Omega_2 := g_1(\Omega_1) \) which is simply connected. It therefore admits a branch of the square root, denoted by \(\sqrt{} \). Let \(g_2 \in \text{Aut}(\mathbb{D}) \) take \(\sqrt{g_1(0)} \) onto 0. By construction,
\[
F := g_2 \circ \sqrt{} \circ g_1 \circ f_\infty
\]
satisfies \(e^{i\theta} F \in F \) for suitable \(\theta \). The inverse of \(g_2 \circ \sqrt{} \circ g_1 \) exists and equals the analytic function
\[
h(z) := g_1^{-1}((g_2^{-1}(z))^2) : \mathbb{D} \to \mathbb{D}
\]
which takes 0 to 0 and is not an automorphism of \(\mathbb{D} \). Hence, by the Schwarz lemma, \(|h'(0)| < 1 \). Since \(h \circ F = f \), we have \(h'(0)F'(0) = f'(0) \) which yields the desired contradiction.

We refer to \(f \) as in the theorem as a “Riemann map”. It is clear that \(f \) becomes unique once we ask for \(f(z_0) = 0, f'(z_0) > 0 \) for any \(z_0 \in \Omega \) (this can always be achieved). It is clear that \(\Omega = \mathbb{C} \) does not admit such a map (constancy of bounded entire functions). Next, we address the important issue of the boundary behavior of the Riemann map.

Definition 2.23. We say that \(z_0 \in \partial \Omega \) is regular provided for all \(0 < r < r_0(z_0) \)
\[
\Omega \cap \{ z \in \mathbb{C} \mid |z - z_0| = r \} = \{ z_0 + re^{i\theta} \mid \theta_1(r) < \theta < \theta_2(r) \}
\]
for some \(\theta_1(r) < \theta_2(r) \) which are continuous in \(r \). In other words, \(\Omega \cap \partial D(z_0, r) \) is an arc for all small \(r > 0 \). We say that \(\Omega \) is regular provided all points of \(\partial \Omega \) are regular.

This notion of regularity only applies to the Riemann mapping theorem (later we shall encounter another — potential theoretic — notion of regularity at the boundary). An example of a regular \(\Omega \) is a manifold with \(C^1 \)-boundary and corners, see below.

Theorem 2.24. Suppose \(\Omega \) is bounded, simply connected, and regular. Then any conformal homeomorphism as in Theorem 2.22 extends to a homeomorphism \(\bar{\Omega} \to \bar{\mathbb{D}} \).

Proof. Let \(f : \Omega \to \mathbb{D} \) be a Riemann map. We first show that \(\lim_{z \to z_0} f(z) \) exists for all \(z_0 \in \partial \Omega \), the limit being taken from within \(\Omega \). Suppose this fails for some \(z_0 \in \partial \Omega \). Then there exist sequences \(\{z_n\}_{n=1}^\infty \) and \(\{\zeta_n\}_{n=1}^\infty \) in \(\Omega \) converging to \(z_0 \) and such that
\[
f(z_n) \to w_1, \quad f(\zeta_n) \to w_2
\]
as \(n \to \infty \). Here \(w_1 \neq w_2 \in \partial \mathbb{D} \). Let \(\gamma_1 \) be a continuous curve that connect the points \(\{ f(z_n) \}_{n=1}^{\infty} \) in this order and let \(\gamma_2 \) do the same with \(\{ f(z_n) \}_{n=1}^{\infty} \). Denote \(\eta_j := f^{-1} \circ \gamma_j \) for \(j = 1, 2 \). Then \(\eta_j \) are continuous curves both converging to \(z_0 \). Let
\[
z_r \in \partial D(z_0, r) \cap \eta_1, \quad \zeta_r \in \partial D(z_0, r) \cap \eta_2
\]
where we identified the curves with their set of points. By regularity of \(z_0 \) there exists an arc \(c_r \subset \Omega \cap \partial D(z_0, r) \) with
\[
f(z_r) - f(\zeta_r) = \int_{c_r} f'(z) \, dz
\]
which further implies that
\[
|f(z_r) - f(\zeta_r)|^2 \leq \left| \int_{c_r} f'(z) \, dz \right|^2 \leq \left(\int_{\alpha(r)}^{\beta(r)} |f'(re^{i\theta})| \, r \, d\theta \right)^2
\]
\[
\leq 2\pi r \int_{\theta_1(r)}^{\theta_2(r)} |f'(re^{i\theta})|^2 r \, d\theta
\]
where we used Definition 2.23 and Cauchy-Schwarz. Dividing by \(r \) and integrating over \(0 < r < r_0(z_0) \) implies that
\[
\int_0^{r_0(z_0)} \frac{|f(z_r) - f(\zeta_r)|^2}{r} \, dr \leq \int_{\Omega} |f'(z)|^2 \, dz = \text{area (} \mathbb{D} \text{)} < \infty
\]
contradicting that \(f(z_r) \to w_1 \) and \(f(\zeta_r) \to w_2 \) as \(r \to 0 \) where \(w_1 \neq w_2 \). Hence,
\[
\lim_{z \to z_0} f(z)
\]
does exist and defines a continuous extension \(F: \bar{\Omega} \to \bar{\mathbb{D}} \) of \(f \). Next, apply the same argument to \(f^{-1}: \mathbb{D} \to \bar{\Omega} \). This can be done since obviously \(\mathbb{D} \) is regular in the sense of Definition 2.23 and moreover, since any sequence \(z_n \in \Omega \) converging to \(z_0 \in \partial \Omega \) can be connected by a continuous curve inside \(\Omega \) — indeed, use the continuity of \(\theta_1(r), \theta_2(r) \) in Definition 2.23. Therefore, \(f^{-1} \) extends to a continuous map \(G: \bar{\mathbb{D}} \to \bar{\Omega} \). Finally, it is evident that \(F \circ G = \text{Id}_\mathbb{D} \) and \(G \circ F = \text{Id}_\Omega \) as desired.

The same statement applies to unbounded \(\Omega \). In that case, we regard \(\Omega \) as a region in \(\mathbb{C}_\infty \) and call \(\infty \) regular provided \(0 \) is regular for \(\Omega^{-1} := \{ z^{-1} | z \in \Omega \} \). The following obvious result gives some examples of regular domains.

Lemma 2.25. Any region \(\Omega \subset \mathbb{C} \) so that \(\bar{\Omega} \) is a \(C^1 \)-manifold with boundary and corners is regular. This means that for every \(z_0 \in \Omega \) there exists a \(C^1 \)-diffeomorphism \(\phi \) of a neighborhood \(U \) of \(z_0 \) onto a disk \(D(0, r_1) \) for some \(r_1 = r_1(z_0) > 0 \) and such that
\[
\phi(\Omega \cap U) = \{ re^{i\theta} | 0 < r < r_1, 0 < \theta < \theta_1 < 2\pi \}
\]
We close this chapter with a version of Runge’s theorem. It addresses the question as to whether any \(f \in \mathcal{H}(\Omega) \) can be approximated on compact sets by a polynomial. Again, there is a topological obstruction: \(f(z) = \frac{1}{z} \) cannot be approximated on \(1 \leq |z| \leq 2 \) by polynomials – otherwise, \(\oint_{|z|=1} \frac{dz}{z} = 0 \), which is false. However, on simply connected domains this can be done. On general domains, it can be done by rational functions.

Theorem 2.26. Let \(\Omega \subset \Omega \) be simply connected. Then any \(f \in \mathcal{H}(\Omega) \) can be approximated uniformly on compact subsets of \(\Omega \) by polynomials.

Proof. Let \(K \subset \Omega \) be compact. Every bounded component of \(\mathbb{C} \setminus K \) belongs to \(\Omega \) since the latter is simply connected. Taking the union of \(K \) with these bounded components therefore produces a compact set \(K' \) which is simply connected. So we can assume that \(K \) is simply connected. Cover \(K \) by finitely many open disks \(D_j \) with \(\bar{D}_j \subset \Omega \); then \(\partial \bigcup_j D_j \) describes a cycle \(c \) which winds around every point of \(K \) once. Thus,

\[
f(z) = \frac{1}{2\pi i} \oint_c \frac{f(\zeta)}{z - \zeta} d\zeta
\]

and the integral on the right-hand side can be approximated by a sum uniformly on \(K \). So it suffices to prove that, for any \(\zeta \in \Omega \setminus K \), \(f(z, \zeta) := \frac{1}{z - \zeta} \) can be approximated by polynomials uniformly on \(K \). To this end, let \(\phi \in C(K)^* \) (a bounded linear functional on \(C(K) \)) that vanishes on all polynomials. We remark that the polynomials are in general not dense in \(C(K) \) (see Proposition 2.17) so that \(\phi \) does not need to vanish. We claim, however, that \(\phi(f(\cdot, \zeta)) = 0 \) for all \(\zeta \in \mathbb{C} \setminus K \). If \(|\zeta| > \sup_{z \in K} |z| \), then this follows from

\[
f(z, \zeta) = -\sum_{n=0}^{\infty} \left(\frac{z}{\zeta} \right)^n \quad \forall z \in K
\]

Next, observe that \(\phi(f(\cdot, \zeta)) \) is analytic in \(\zeta \). Since \(\mathbb{C} \setminus K \) is connected, the claim is proved. By the Hahn–Banach theorem,

\[
f(\cdot, \zeta) \in \overline{\text{span}\{p(z) \mid p \in \mathbb{C}[z]\}} =: L
\]

where the closure is with respect to \(C(K) \). Indeed, assume this fails. Then

\[
\phi(p + tf(\cdot, \zeta)) := t \quad \forall p \in L, \forall t \in \mathbb{C}
\]

defines a bounded linear functional on the span of \(L \) and \(f(\cdot, \zeta) \) which vanishes on \(L \) and does not vanish on \(f(\cdot, \zeta) \). Extend it as a bounded functional to \(C(K) \) (without increasing its norm \(\text{dist}(f(\cdot, \zeta), L)^{-1} \)). \qed
Chapter 3

Harmonic functions on \mathbb{D}

There is a close connection between Fourier series and analytic (harmonic) functions on the disc \mathbb{D}. Heuristically speaking, a Fourier series can be viewed as the “boundary values” of a Laurent series

$$\sum_{n=-\infty}^{\infty} a_n z^n$$

Let us use this observation to derive a solution formula for the following fundamental problem: Given a function f on the boundary of \mathbb{D} find a harmonic function u on \mathbb{D} which attains these boundary values.

Notice that this so-called Dirichlet problem is formulated too vaguely. In fact, much of this as well as the following two chapters is devoted to a proper interpretation of what we mean by attaining the boundary values and what kind of boundedness properties we wish u to satisfy on all of \mathbb{D}.

But for the moment, let us proceed heuristically. Starting with the Fourier series $f(\theta) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e(n\theta)$ with $e(\theta) := e^{2\pi i \theta}$, we observe that one harmonic extension to the interior is given by

$$u(z) = \sum_{n \in \mathbb{Z}} \hat{f}(n)z^n$$.

This is singular at $z = 0$, though, in case $\hat{f}(n) \neq 0$ for one $n < 0$. Since both z^n and $\overline{z^n}$ are (complex) harmonic, we can avoid the singularity by defining

$$u(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n + \sum_{n=-\infty}^{-1} \hat{f}(n)\overline{z^n}$$

which at least formally is a solution of our Dirichlet problem.

Inserting $z = re(\theta)$ and $\hat{f}(n) = \int_0^1 e(-n\varphi)f(\varphi)\,d\varphi$ into (3.1) yields

$$u(re(\theta)) = \int_T \sum_{n \in \mathbb{Z}} r^{|n|} e(n(\theta - \varphi))f(\varphi)\,d\varphi =: \int_0^1 P_r(\theta - \varphi) f(\varphi)\,d\varphi$$
where the Poisson kernel

\[
P_r(\theta) := \sum_{n \in \mathbb{Z}} r^{|n|} e^{i n \theta} = \frac{1 - r^2}{1 - 2r \cos(2\pi \theta) + r^2}
\]

via explicit summation. We start the rigorous theory by stating some properties of \(P_r \).

Lemma 3.1. The function \(z = re(\theta) = P_r(\theta) \) is a positive harmonic function on \(\mathbb{D} \). It satisfies \(\int_0^1 P_r(\theta) \, d\theta = 1 \) and for any (complex) Borel measure \(\mu \) on \(\mathbb{T} \),

\[z = re(\theta) \mapsto (P_r \ast \mu)(\theta) \]

defines a harmonic function on \(\mathbb{D} \).

Proof. These properties are all either evident from the explicit form of the kernel or via the defining series. \(\square \)

The behavior of the Poisson kernel close to the boundary can be captured by means of the following notion.

Definition 3.2. A sequence \(\{\Phi_n\}_{n=1}^{\infty} \subset L^\infty(\mathbb{T}) \) is called an approximate identity provided

A1) \(\int_0^1 \Phi_n(\theta) \, d\theta = 1 \) for all \(n \)

A2) \(\sup_n \int_0^1 |\Phi_n(\theta)| \, d\theta < \infty \)

A3) for all \(\delta > 0 \) one has \(\int_{|x|>\delta} |\Phi_n(\theta)| \, d\theta \to 0 \) as \(n \to \infty \).

The same definition applies, with obvious modifications, to families of the form \(\{\Phi_t\}_{0<t<1} \) (with \(n \to \infty \) replaced by \(t \to 1- \)).

A standard example is the box kernel

\[\left\{ \frac{1}{2\varepsilon} \chi_{[-\varepsilon,\varepsilon]} \right\}_{0<\varepsilon<\frac{1}{2}} \]

in the limit \(\varepsilon \to 0 \). Another example is the Fejer kernel from Fourier series. The relevant example for our purposes is of course the Poisson kernel \(\{P_r\}_{0<r<1} \), and we leave it to the reader to check that it satisfies A1)–A3). The significance of approximate identities lies with their reproducing properties (as their name suggests).

Lemma 3.3. For any approximate identity \(\{\Phi_n\}_{n=1}^{\infty} \) one has

1. If \(f \in C(\mathbb{T}) \), then \(\|\Phi_n \ast f - f\|_{\infty} \to 0 \) as \(n \to \infty \)

2. If \(f \in L^p(\mathbb{T}) \) where \(1 \leq p < \infty \), then \(\|\Phi_n \ast f - f\|_p \to 0 \) as \(n \to \infty \).

These statements carry over to approximate identities \(\Phi_t \), \(0 < t < 1 \) simply by replacing \(n \to \infty \) with \(t \to 1 \).
Proof. Since T is compact, f is uniformly continuous. Given $\varepsilon > 0$, let $\delta > 0$ be such that
$$\sup \sup_{|y|<\delta} |f(x-y) - f(x)| < \varepsilon$$
Then, by A1)–A3),
$$|(\Phi_n * f)(x) - f(x)| = \left| \int_T (f(x-y) - f(x))\Phi_n(y) \, dy \right|$$
$$\leq \sup \sup_{|x|<|y|<\delta} |f(x-y) - f(x)| \int_T |\Phi_n(t)| \, dt + \int_{|y|\geq\delta} |\Phi_n(y)| 2\|f\|_\infty \, dy$$
$$< C\varepsilon$$
provided n is large. For the second part, fix $f \in L^p$. Let $g \in C(T)$ with $\|f-g\|_p < \varepsilon$. Then
$$\|\Phi_n * f - f\|_p \leq \|\Phi_n * (f-g)\|_p + \|f-g\|_p + \|\Phi_n * g - g\|_p$$
$$\leq \left(\sup_n \|\Phi_n\|_1 + 1 \right) \|f-g\|_p + \|\Phi_n * g - g\|_\infty$$
where we have used Young’s inequality ($\|f_1 * f_2\|_p \leq \|f_1\|_1 \|f_2\|_p$) to obtain the first term on the right-hand side. Using A2), the assumption on g, as well as the first part finishes the proof.

An immediate consequence is the following simple and fundamental result.

Theorem 3.4. Let $f \in C(T)$. The unique harmonic function u on D, with $u \in C(D)$ and $u = f$ on T is given by $u(z) = (P_r * f)(\theta)$, $z = re(\theta)$.

Proof. Uniqueness follows from the maximum principle. For the existence, we observed before that $u(z) := (P_r * f)(\theta)$ with $|z| < 1$ is harmonic on D. By Lemma 3.3, $\|u(re(\cdot) - f\|_\infty \to 0$ as $r \to 1-$. This implies that we can extend u continuously to \bar{D} by setting it equal to f on T.

Next, we wish to reverse this process and understand which classes of harmonic functions on D assume boundary values on T. Moreover, we need to clarify which boundary values arise here and what we mean by “assume”. Particularly important classes known as the “little” Hardy spaces are as follows:

Definition 3.5. For any $1 \leq p \leq \infty$ define
$$h^p(D) := \left\{ u : D \to \mathbb{C} \text{ harmonic} \mid \sup_{0<r<1} \int_0^1 |u(re(\theta))|^p \, d\theta < \infty \right\}$$
with norm
$$\|u\|_p := \sup_{0<r<1} \|u(re(\cdot))\|_{L^p(T)}$$
CHAPTER 3. HARMONIC FUNCTIONS ON \mathbb{D}

By the mean value property, any positive harmonic function is in $h^1(\mathbb{D})$. Amongst those, one of the most important examples is $P_r(\theta) \in h^1(\mathbb{D})$. Observe that this function has boundary values $P_r \to \delta_0$ (the Dirac mass at $\theta = 0$) as $t \to 1-$ where the convergence is in the sense of distributions. In what follows, $\mathcal{M}(\mathbb{T})$ denotes the complex valued Borel measures and $\mathcal{M}^+(\mathbb{T}) \subset \mathcal{M}(\mathbb{T})$ the positive Borel measures.

Theorem 3.6. There is a one-to-one correspondence between $h^1(\mathbb{D})$ and $\mathcal{M}(\mathbb{T})$ given by $\mu \in \mathcal{M}(\mathbb{T}) \mapsto F_r(\theta) := (P_r \ast \mu)(\theta)$. Under this correspondence, any $\mu \in \mathcal{M}^+(\mathbb{T})$ relates uniquely to a positive harmonic function. Furthermore,

$$\|\mu\| = \sup_{0 < r < 1} \|F_r\|_1 = \lim_{r \to 1^-} \|F_r\|_1$$

(3.2)

and the following properties hold:

1. μ is absolutely continuous with respect to Lebesgue measure ($\mu \ll d\theta$) if and only if $\{F_r\}$ converges in $L^1(\mathbb{T})$. If so, then $d\mu = f d\theta$ where $f = L^1$-limit of F_r.

2. The following are equivalent for $1 < p \leq \infty$: $d\mu = f d\theta$ with $f \in L^p(\mathbb{T})$

$$\iff \{F_r\}_{0 < r < 1} \text{ is } L^p \text{- bounded}$$

$$\iff \{F_r\} \text{ converges in } L^p \text{ if } 1 < p < \infty \text{ and in weak-}^* \text{ sense in } L^\infty \text{ if } p = \infty \text{ as } r \to 1$$

3. f is continuous $\iff F$ extends to a continuous function on $\mathbb{T} \iff F_r$ converges uniformly as $r \to 1-$.

This theorem identifies $h^1(\mathbb{D})$ with $\mathcal{M}(\mathbb{T})$, and $h^p(\mathbb{D})$ with $L^p(\mathbb{T})$ for $1 < p \leq \infty$. Moreover, $h^\infty(\mathbb{D})$ contains the subclass of harmonic functions that can be extended continuously onto $\overline{\mathbb{D}}$; this subclass is the same as $C(\mathbb{T})$. Before proving the theorem we present two simple lemmas. In what follows we use the notation $F_r(\theta) := F(re(\theta))$.

Lemma 3.7.

1. If $F \in C(\overline{\mathbb{D}})$ and $\triangle F = 0$ in \mathbb{D}, then $F_r = P_r \ast F_1$ for any $0 \leq r < 1$.

2. If $\triangle F = 0$ in \mathbb{D}, then $F_{rs} = P_r \ast F_s$ for any $0 \leq r, s < 1$.

3. As a function of $r \in (0, 1)$ the norms $\|F_r\|_p$ are non-decreasing for any $1 \leq p \leq \infty$.

Proof. 1.) is a restatement of Theorem 3.4. For 2.), rescale the disc $s\mathbb{D}$ to \mathbb{D} and apply the first property. Finally, by Young’s inequality

$$\|F_{rs}\|_p \leq \|P_r\|_1 \|F_s\|_p = \|F_s\|_p$$

as claimed. \square
Lemma 3.8. Let $F \in h^1(\mathbb{D})$. Then there exists a unique measure $\mu \in \mathcal{M}(\mathbb{T})$ such that $F_r = P_r \ast \mu$.

Proof. Since the unit ball of $\mathcal{M}(\mathbb{T})$ is weak-\ast compact there exists a subsequence $r_j \to 1$ with $F_{r_j} \to \mu$ in weak-\ast sense to some $\mu \in \mathcal{M}(\mathbb{T})$. Then, for any $0 < r < 1$,

$$P_r \ast \mu = \lim_{j \to \infty} (F_{r_j} \ast P_r) = \lim_{j \to \infty} F_{r r_j} = F_r$$

by Lemma 3.7. Let $f \in C(\mathbb{T})$. Then, again by Lemma 3.7,

$$\langle F_r, f \rangle = \langle P_r \ast \mu, f \rangle = \langle \mu, P_r \ast f \rangle \to \langle \mu, f \rangle$$

as $r \to 1$. This shows that, in the weak-\ast sense,

$$\mu = \lim_{r \to 1} F_r$$

(3.3)

which implies uniqueness of μ.

Proof of Theorem 3.6. If $\mu \in \mathcal{M}(\mathbb{T})$, then $P_r \ast \mu \in h^1(\mathbb{D})$. Conversely, given $F \in h^1(\mathbb{D})$ then by Lemma 3.8 there is a unique μ so that $F_r = P_r \ast \mu$. This gives the one-to-one correspondence. Moreover, (3.3) and Lemma 3.7 show that

$$\|\mu\| \leq \lim \sup_{r \to 1} \|F_r\|_1 = \sup_{0 < r < 1} \|F_r\|_1 = \lim_{r \to 1} \|F_r\|_1.$$

Since clearly also

$$\sup_{0 < r < 1} \|F_r\|_1 \leq \sup_{0 < r < 1} \|P_r\|_1 \|\mu\| = \|\mu\|,$$

(3.2) follows. If $f \in L^1(\mathbb{T})$ and $d\mu = fd\theta$, then Lemma 3.3 shows that $F_r \to f$ in $L^1(\mathbb{T})$. Conversely, if $F_r \to f$ in the sense of $L^1(\mathbb{T})$, then because of (3.3) necessarily $d\mu = fd\theta$ which proves the first part. The other parts are equally easy and we skip the details—simply invoke Lemma 3.3, part 2.) for $1 < p < \infty$ and Lemma 23.3 part 1.) if $p = \infty$.

In passing we remark the following: an important role is played by the kernel $Q_r(\theta)$ which is the harmonic conjugate of $P_r(\theta)$. Recall that this means that $P_r(\theta) + iQ_r(\theta)$ is analytic in $z = re^{i\theta}$ and $Q_0 = 0$. In this case it is easy to find $Q_r(\theta)$ since

$$P_r(\theta) = \text{Re} \left(\frac{1 + z}{1 - z} \right)$$

and therefore

$$Q_r(\theta) = \text{Im} \left(\frac{1 + z}{1 - z} \right) = \frac{2r \sin(2\pi \theta)}{1 - 2r \cos(2\pi \theta) + r^2}$$

Observe that $\{Q_r\}_{0 < r < 1}$ is not an approximate identity, since $Q_1(\theta) = \cot(\pi \theta)$ which is not the density of a measure – it behaves like $\frac{1}{\pi \theta}$ close to $\theta = 0$. The Hilbert transform is the map which is formally defined as follows:

$$f \mapsto u_f \mapsto \tilde{u}_f \mapsto \tilde{u}_f|_\mathbb{T}$$
where u_f denotes the harmonic extension to \mathbb{D} and \tilde{u}_f its harmonic conjugate. From the preceding, Q_1 is the kernel of the Hilbert transform. It is a very important object, especially for the role it played in the development of function theory. Similarly famously, the Dirichlet kernel in Fourier series is not an approximate identity and the many efforts in understanding its mapping properties have been of enormous importance in analysis. But we will not pursue these topics any further here.

Instead, we turn to the issue of almost everywhere convergence of $P_r * f$ to f as $r \to 1$. The main idea here is to mimic the proof of the Lebesgue differentiation theorem. In particular, we need the Hardy-Littlewood maximal function Mf, which is defined as follows:

$$Mf(x) = \sup_{x \in I \subset T} \frac{1}{|I|} \int_I |f(y)| \, dy$$

where $I \subset T$ is an (open) interval and $|I|$ is the length of I. The most basic facts concerning this (sublinear) operator are contained in the following result.

Proposition 3.9. M is bounded from L^1 to weak L^1, i.e.,

$$\text{mes}[x \in T \mid Mf(x) > \lambda] \leq \frac{3}{\lambda} \|f\|_1$$

for all $\lambda > 0$. For any $1 < p \leq \infty$, M is bounded on L^p.

Proof. Fix some $\lambda > 0$ and any compact

$$K \subset \{x \mid Mf(x) > \lambda\}$$

(3.4)

There exists a finite cover $\{I_j\}_{j=1}^N$ of T by open arcs I_j such that

$$\int_{I_j} |f(y)| \, dy > \lambda |I_j|$$

(3.5)

for each j. We now pass to a more convenient sub-cover (this is known as Wiener’s covering lemma): Select an arc of maximal length from $\{I_j\}$; call it J_1. Observe that any I_j such that $I_j \cap J_1 \neq \emptyset$ satisfies $I_j \subset 3 \cdot J_1$ where $3 \cdot J_1$ is the arc with the same center as J_1 and three times the length (if $3 \cdot J_1$ has length larger than 1, then set $3 \cdot J_1 = T$). Now remove all arcs from $\{I_j\}_{j=1}^N$ that intersect J_1. Let J_2 be one of the remaining ones with maximal length. Continuing in this fashion we obtain arcs $\{J_\ell\}_{\ell=1}^L$ which are pair-wise disjoint and so that

$$\bigcup_{j=1}^N I_j \subset \bigcup_{\ell=1}^L 3 \cdot J_\ell$$

In view of (3.4) and (3.5) therefore,

$$\text{mes}(K) \leq \text{mes} \left(\bigcup_{\ell=1}^L 3 \cdot J_\ell \right) \leq 3 \sum_{\ell=1}^L \text{mes}(J_\ell) \leq \frac{3}{\lambda} \sum_{\ell=1}^L \frac{1}{|J_\ell|} \int_{J_\ell} |f(y)| \, dy \leq \frac{3}{\lambda} \|f\|_1$$
as claimed. To prove the L^p statement, one interpolates the weak L^1 bound with the trivial L^∞ bound
\[\|Mf\|_\infty \leq \|f\|_\infty \]
by means of Marcinkiewicz’s interpolation theorem.

We now introduce a class of approximate identities which can be reduced to the box kernels. The importance of this idea is that it allows us to dominate the maximal function associated with an approximate identity by the Hardy-Littlewood maximal function, see Lemma 3.11 below.

Definition 3.10. Let \(\{\Phi_n\}_{n=1}^\infty \) be an approximate identity as in Definition 3.2. We say that it is radially bounded if there exist functions \(\{\Psi_n\}_{n=1}^\infty \) on \(\mathbb{T} \) so that the following additional property holds:

\[A_4) \quad |\Phi_n| \leq \Psi_n, \Psi_n \text{ is even and decreasing, i.e., } \Psi_n(x) \leq \Psi_n(y) \text{ for } 0 \leq y \leq x \leq \frac{1}{2}, \text{ for all } n \geq 1. \]

Finally, we require that \(\sup_n \|\Psi_n\|_1 < \infty \).

Now for the domination lemma.

Lemma 3.11. If \(\{\Phi_n\}_{n=1}^\infty \) satisfies A4, then for any \(f \in L^1(\mathbb{T}) \) one has
\[\sup_n |(\Phi_n \ast f)(x)| \leq \sup_n \|\Psi_n\|_1 Mf(x) \]
for all \(x \in \mathbb{T} \).

Proof. It clearly suffices to show the following statement: let \(K : [-\frac{1}{2}, \frac{1}{2}] \to \mathbb{R}^+ \cup \{0\} \) be even and decreasing. Then for any \(f \in L^1(\mathbb{T}) \)
\[|(K \ast f)(x)| \leq \|K\|_1 Mf(x) \quad (3.6) \]
Indeed, assume that (3.6) holds. Then
\[\sup_n |(\Phi_n \ast f)(x)| \leq \sup_n (\Psi_n \ast |f|)(x) \leq \sup_n \|\Psi_n\|_1 Mf(x) \]
and the lemma follows. The idea behind (3.6) is to show that \(K \) can be written as an average of box kernels, i.e., for some positive measure \(\mu \)
\[K(x) = \int_0^{\frac{1}{2}} \chi_{[-y,y]}(x) \, d\mu(y) \quad (3.7) \]
We leave it to the reader to check that
\[d\mu = -dK + K \left(\frac{1}{2} \right) \delta_{\frac{1}{2}} \]
is a suitable choice. Notice that (3.7) implies that
\[\int_0^1 K(x) \, dx = \int_0^{\frac{1}{2}} 2y \, d\mu(y) \]
Moreover, by (3.7),
\[
| (K * f)(x) | = \left| \int_{0}^{\frac{1}{4}} \left(\frac{1}{2y} \chi_{[-y,y]} * f \right)(x) 2y \, d\mu(y) \right| \leq \int_{0}^{\frac{1}{4}} Mf(x) 2y \, d\mu(y) = Mf(x) \Vert K \Vert_1
\]
which is (3.6).

Finally, we can properly address the question of whether \(P_r * f \to f \) in the almost everywhere sense for \(f \in L^1(\mathbb{T}) \). The idea is as follows: the pointwise convergence is clear from Lemma 3.3 for continuous \(f \). This suggests approximating \(f \in L^1(\mathbb{T}) \) by a sequence of continuous ones, say \(\{g_n\}_{n=1}^{\infty} \), in the \(L^1 \) norm.

Evidently, we encounter an interchange of limits here, namely \(r \to 1 \) and \(n \to \infty \). As always in such a situation, we require some form of uniform control. The needed uniform control is precisely furnished by the Hardy–Littlewood maximal function.

Theorem 3.12. If \(\{\Phi_n\}_{n=1}^{\infty} \) satisfies A1)–A4), then for any \(f \in L^1(\mathbb{T}) \) one has \(\Phi_n * f \to f \) almost everywhere as \(n \to \infty \).

Proof. Pick \(\varepsilon > 0 \) and let \(g \in C(\mathbb{T}) \) with \(\| f - g \|_1 < \varepsilon \). By Lemma 3.3, with \(h = f - g \) one has, with \(| \cdot | \) being Lebesgue measure,
\[
\begin{align*}
&\left[x \in \mathbb{T} \mid \limsup_{n \to \infty} | (\Phi_n * f)(x) - f(x) | > \sqrt{\varepsilon} \right] \\
&\quad \leq \left[x \in \mathbb{T} \mid \limsup_{n \to \infty} | (\Phi_n * h)(x) | > \sqrt{\varepsilon}/2 \right] + \left[x \in \mathbb{T} \mid | h(x) | > \sqrt{\varepsilon}/2 \right] \\
&\quad \leq \left[x \in \mathbb{T} \mid \sup_{n} | (\Phi_n * h)(x) | > \sqrt{\varepsilon}/2 \right] + \left[x \in \mathbb{T} \mid | h(x) | > \sqrt{\varepsilon}/2 \right] \\
&\quad \leq C \sqrt{\varepsilon}
\end{align*}
\]

To pass to the final inequality we used Proposition 3.9 as well as Markov’s inequality (recall \(\| h \|_1 < \varepsilon \)).

As a corollary we not only obtain the classical Lebesgue differentiation theorem, but also almost everywhere convergence of of the Poisson integrals \(P_r * f \to f \) for any \(f \in L^1(\mathbb{T}) \) as \(r \to 1 \). In view of Theorem 3.6 we of course would like to know whether a similar statement holds for measures instead of \(L^1 \) functions. It turns out, see Problem 26 below, that \(P_r * \mu \to f \) almost everywhere where \(f \) is the density of the absolutely continuous part of \(\mu \) in the Lebesgue decomposition. A most important example here is \(P_r \) itself! Indeed, its boundary measure is \(\delta_0 \) and the almost everywhere limit is identically zero. Hence, in the almost everywhere limit we lose a lot of information namely the singular part of the boundary measure. An amazing fact, known as the F. & M. Riesz theorem, states that there is no such loss in the class \(h^1(\mathbb{D}) \cap H(\mathbb{D}) \). Indeed, any such function is the Poisson integral of an \(L^1 \) function rather than a measure. Another way of expressing this fact is as follows: if \(\mu \in M(\mathbb{T}) \) satisfies
\(\hat{\mu}(n) = 0 \) for all \(n < 0 \), then \(\mu \) is absolutely continuous with respect to Lebesgue measure on \(T \). For this important result we refer to the reader to the literature on Hardy spaces \(H^p(D) := h^p(D) \cap H(D) \) of holomorphic functions on \(D \).
Chapter 4

Riemann surfaces: definitions, examples, basic properties

Definition 4.1. A Riemann surface is a two-dimensional, connected, Hausdorff topological manifold M with a countable base for the topology and with conformal transition maps between charts. I.e., there exists a family of open set $\{U_\alpha\}_{\alpha \in A}$ covering M and homeomorphisms $\phi_\alpha : U_\alpha \to V_\alpha$ where $V_\alpha \subset \mathbb{R}^2$ is some open set so that

$$\phi_\alpha \circ \phi^{-1}_\beta : \phi_\beta(U_\alpha \cap U_\beta) \to \phi_\alpha(U_\alpha \cap U_\beta)$$

is biholomorphic (in other words, a conformal homeomorphism). We refer to each (U_α, ϕ_α) as a chart and to A as an atlas of M.

The countability axiom can be dispensed with as it can be shown to follow from the other axioms, but in all applications it is easy to check directly. Two atlases A_1, A_2 of M are called equivalent iff $A_1 \cup A_2$ is an atlas of M. An equivalence class of atlases of M is called a conformal structure and a maximal atlas of M is the union of all atlases in a conformal structure. We shall often write (U,z) for a chart indicative of the fact that $p \mapsto z(p)$ takes U into the complex z-plane. Moreover, a parametric disk is a set $D \subset U$ where (U,z) is chart with $z(D)$ a disk in \mathbb{C}. We shall always assume that $z(D) \subset z(U)$ is compact. By a parametric disk D centered at $p \in M$ we mean that (U,z) is a chart with $p \in U$, $z(p) = 0$, and $D = z^{-1}(D(0,r))$ for some $r > 0$.

We say that the Riemann surface M is an extension of the Riemann surface N iff $N \subset M$ as an open subset and if the conformal structure of M restricted to N is exactly the conformal structure that N carried to begin with.

Examples: 1) Any open region $\Omega \subset \mathbb{C}$. Here, a single chart suffices, namely (Ω, z) with z being the identity on Ω. The associated conformal structure consists of all (U, ϕ) with $U \subset \Omega$ open and $\phi : U \to \mathbb{C}$ biholomorphic. Notice that an alternative, non-equivalent conformal structure is (Ω, \bar{z}). 47
2) Any polyhedral surface $S \subset \mathbb{R}^3$ is a Riemann surface. Such an S is defined to be a compact topological manifold which can be written as the finite union of faces $\{f_i\}$, edges $\{e_j\}$, and vertices $\{v_k\}$. Any f_i is assumed to be an open subset of a plane in \mathbb{R}^3, an edge is an open line segment and a vertex a point in \mathbb{R}^3 with the obvious relations between them (the boundaries of faces in \mathbb{R}^3 are finite unions of edges and vertices and the endpoints of the edges are vertices; an edge is where two faces meet etc.). To define a conformal structure on such a polyhedral surface, proceed as follows: each f_i defines a chart (f_i, ϕ_i) where ϕ_i is Euclidean motion (affine isometry) that takes f_i into $C = \mathbb{R}^2 = \subset \mathbb{R}^3$ where we identify \mathbb{R}^2 with the (x_1, x_2)–plane of \mathbb{R}^3, say. Each edge e_j defines a chart as follows: let f_{i_1} and f_{i_2} be the two unique faces that meet in e_j. Then $(f_{i_1} \cup f_{i_2} \cup e_j, \phi_j)$ is a chart where ϕ_j maps that folds $f_{i_1} \cup f_{i_2} \cup e_j$ at the edge so that it becomes straight (piece of a plane) and then maps that plane isometrically into \mathbb{R}^2. Finally, at a vertex v_k we define a chart as follows: for example, suppose three faces meet at v_k, say $f_{i_1}, f_{i_2}, f_{i_3}$ with respective angles $\alpha_1, \alpha_2, \alpha_3$. Let $\gamma > 0$ be defined so that

$$\gamma \sum \alpha_i = 2\pi \quad (4.1)$$

and let the chart map these faces with their edges meeting at v into the plane in such a way that angles get dilated by γ. It is easy to see that this defines a conformal structure (for example, at a vertex, the transition maps are $z \mapsto \frac{1}{z}$).

3) The Riemann sphere $S^2 \subset \mathbb{R}^3$. We define a conformal structure via two charts

$$(S^2 \setminus (0,0,1), \phi_+), \quad (S^2 \setminus (0,0,-1), \phi_-)$$

where ϕ_{\pm} are the stereographic projections

$$\phi_+(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}, \quad \phi_-(x_1, x_2, x_3) = \frac{x_1 - ix_2}{1 + x_3}$$

from the north, and south pole, respectively. If $p = (x_1, x_2, x_3) \in S^2$ with $x_3 \neq \pm 1$, then

$$\phi_+(p)\phi_-(p) = 1$$

This shows that the transition map between the two charts is $z \mapsto \frac{1}{z}$ from $\mathbb{C}^* \to \mathbb{C}^*$.

4) The one-point compactification of \mathbb{C} denoted by $\mathbb{C}_\infty := \mathbb{C} \cup \{\infty\}$. The neighborhood base of ∞ in \mathbb{C}_∞ is given by the complements of all compact sets of \mathbb{C}. Again there are two charts, namely

$$(\mathbb{C}, z), \quad (\mathbb{C}_\infty \setminus \{0\}, \frac{1}{z})$$

in the obvious sense. The transition map is again given by $z \mapsto \frac{1}{z}$.

5) The one-dimensional complex projective space

$$\mathbb{C}P^1 := \{[z : w] \mid (z, w) \in \mathbb{C}^2 \setminus \{(0,0)\}\} / \sim$$
where the equivalence relation is \((z_1, w_1) \sim (z_2, w_2)\) iff \(z_2 = \lambda z_1, w_2 = \lambda w_1\) for some \(\lambda \in \mathbb{C}^\ast\). Our charts are \((U_1, \phi_1)\) and \((U_2, \phi_2)\) where

\[
U_1 := \{ [z : w] \in \mathbb{C}P^1 \mid w \neq 0 \}, \quad \phi_1([z : w]) = \frac{z}{w}
\]

\[
U_2 := \{ [z : w] \in \mathbb{C}P^1 \mid z \neq 0 \}, \quad \phi_2([z : w]) = \frac{w}{z}
\]

Here, too, the transition map is \(z \mapsto \frac{1}{z}\).

Definition 4.2. A continuous map \(f : M \to N\) between Riemann surfaces is said to be analytic iff it is analytic in charts. I.e., if \(p \in M\) is arbitrary and \(p \in U_\alpha, f(p) \in V_\beta\) where \((U_\alpha, z_\alpha)\) is a chart of \(M\) and \((V_\beta, w_\beta)\) is a chart of \(N\), respectively, then \(w_\beta \circ f \circ z_\alpha^{-1}\) is analytic where it is defined. We say that \(f\) is a conformal isomorphism iff \(f\) is an analytic homeomorphism.

Note that any conformal isomorphism has an analytic inverse. In Example 1) above, the Riemann surfaces with with conformal structures induced by \((\Omega, z)\) and \((\Omega, \bar{z})\), respectively, do not have equivalent conformal structures but are conformally isomorphic (via \(z \mapsto \bar{z}\)). As the reader may have guessed, examples 3), 4), and 5) are isomorphic (we shall drop “conformal” when it is clearly implied). In what follows,

\[
PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm \text{Id}\}
\]

Theorem 4.3. The Riemann surfaces \(S^2, \mathbb{C}_\infty, \text{and } \mathbb{C}P^1\) are conformally isomorphic. Furthermore, the group of automorphisms of these surfaces is \(PSL(2, \mathbb{C})\).

Proof. we leave it to the reader to write down the explicit isomorphisms between these surfaces. As for the automorphism group, each

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbb{C})
\]

defines an automorphism of \(\mathbb{C}P^1\) via

\[
[z : w] \mapsto [az + bw : cz + dw]
\]

Note that \(\pm A\) define the same map (a M"obius transform). On the other hand, if \(f\) is an automorphism of \(\mathbb{C}_\infty\), then composing with a M"obius transformation we may assume that \(f(\infty) = \infty\). Hence, restricting \(f\) to \(\mathbb{C}\) yields a map from \(\text{Aut}(\mathbb{C})\) which is of the form (see Problem 11) \(f(z) = az + b\) and we are done. \(\square\)

We now state the important uniqueness and open mapping theorems for analytic functions on Riemann surfaces.

Theorem 4.4 (Uniqueness theorem). Let \(f, g : M \to N\) be analytic. Then either \(f \equiv g\) or \(\{p \in M \mid f(p) = g(p)\}\) is discrete in \(M\).
Proof. Define

\[A := \{ p \in M \mid \text{locally at } p, f \text{ and } g \text{ are identically equal} \} \]

\[B := \{ p \in M \mid \text{locally at } p, f \text{ and } g \text{ agree only on a discrete set} \} \]

It is clear that both \(A \) and \(B \) are open subsets of \(M \). We claim that \(M = A \cup B \) which then finishes the proof since \(M \) is connected. If \(p \in M \) is such that \(f(p) \neq g(p) \) then clearly \(p \in B \). If, on the other hand, \(f(p) = g(p) \), then we see via the usual uniqueness theorem in charts that \(\{f = g\} \) not discrete implies that \(f = g \) locally around \(p \).

As an obvious corollary, note that for any analytic \(f : M \to N \) each “level set” \(\{ f \in M \mid f(p) = q \} \) with \(q \in N \) fixed, is either discrete or all of \(M \) (and thus \(f = \text{const} \)). In particular, if \(M \) is compact and \(f \) not constant, then \(\{ p \in M \mid f(p) = q \} \) is finite.

Theorem 4.5 (Open mapping theorem). *Let \(f : M \to N \) be analytic. If \(f \) is not constant, then \(f(M) \) is an open subset of \(N \). More generally, \(f \) takes open subsets of \(M \) to open subsets of \(N \).*

Proof. By the uniqueness theorem, if \(f \) is locally constant around any point, then \(f \) is globally constant. Hence we can apply the usual open mapping theorem in every chart to conclude that \(f(M) \subset N \) is open.

Corollary 4.6. *Let \(M \) be compact and \(f : M \to N \) analytic and nonconstant. Then \(f \) is onto and \(N \) is compact.*

Proof. Since \(f(M) \) is both closed (since compact and \(N \) Hausdorff), and open by Theorem 4.5, it follows that \(f(M) = N \) as claimed.

It is customary to introduce the following terminology.

Definition 4.7. *The holomorphic functions on a Riemann surface \(M \) are defined as all analytic \(f : M \to \mathbb{C} \). They are denoted by \(\mathcal{H}(M) \). The meromorphic functions on \(M \) are defined as all analytic \(f : M \to \mathbb{C}_\infty \). They are denoted by \(\mathcal{M}(M) \).*

In view of the preceding the following statements are immediate.

Corollary 4.8.

Let \(M \) be compact. Then every holomorphic function on \(M \) is constant.

Every meromorphic function on a compact Riemann surface is onto \(\mathbb{C}_\infty \).

If \(f \) is a nonconstant holomorphic function on a Riemann surface, then \(|f| \) attains neither a local maximum nor a positive local minimum on \(M \).

To illustrate what we have accomplished so far, let us give a “topological proof” of Liouville’s theorem: thus assume that \(f \in \mathcal{H}(\mathbb{C}) \cap L^\infty(\mathbb{C}) \). Then \(f(1/z) \) has a removable singularity at \(z = 0 \). In other words, \(f \in \mathcal{H}(\mathbb{C}_\infty) \) and...
thus constant. The analytical ingredient in this proof consists of the uniqueness and open mapping theorems as well as the removability theorem: the first two are reduced to the same properties in charts which then require power series expansions. But instead of using expansions that converge on all of \(\mathbb{C} \) and Cauchy’s estimate we used connectivity to pass from a local property to a global one.

It is a good exercise at this point to verify the following: the meromorphic functions on \(\Omega \subset \mathbb{C} \) in the sense of standard complex analysis coincide exactly with \(\mathcal{M}(\Omega) \setminus \{ \infty \} \) in the sense of Definition 4.7 (we need to discard the function which is constant equal to infinity). In particular, \(\mathcal{M}(\mathbb{C}_\infty) = \left\{ \frac{P}{Q} \mid P, Q \in \mathbb{C}[z], \ Q \neq 0 \right\} \cup \{ \infty \} \)

In other words, the meromorphic functions on \(\mathbb{C}_\infty \) up to the const = \(\infty \) are exactly the rational functions.

Definition 4.9. Let \(f : M \to N \) be analytic and nonconstant. Then the valency of \(f \) at \(p \in M \), denoted by \(\nu_f(p) \), is defined to be the unique positive integer with the property that in charts \((U, \phi) \) around \(p \) (with \(f(p) = 0 \)) and \((V, \psi) \) around \(f(p) \) (with \(\psi(f(p)) = 0 \)) we have \((\psi \circ f \circ \phi^{-1})(z) = (zh(z))^n \) where \(h(0) \neq 0 \). If \(M \) is compact, then the degree of \(f \) at \(q \in N \) is defined as

\[
\deg_f(q) := \sum_{p : f(p) = q} \nu_f(p)
\]

which is a positive integer.

Locally around any point \(p \in M \) with valency \(\nu_f(p) = n \geq 1 \) the map \(f \) is \(n \)-to-one; in fact, every point \(q' \) close but not equal to \(q = f(p) \) has exactly \(n \) pre-images close to \(p \).

Let \(f = \frac{P}{Q} \) be a nonconstant rational function on \(\mathbb{C}_\infty \). Then for every \(q \in \mathbb{C}_\infty \), the reader will easily verify that \(\deg_f(q) = \deg(Q) + \deg(P) \) where the degree of \(P, Q \) is in the sense of polynomials. It is a general fact that \(\deg_f(q) \) does not depend on \(q \in N \).

Lemma 4.10. Let \(f : M \to N \) be analytic and nonconstant with \(M \) compact. Then \(\deg_f(q) \) does not depend on \(q \). It is called the degree of \(f \) and denoted by \(\deg(f) \). The isomorphisms from \(M \) to \(N \) are precisely those nonconstant analytic maps \(f \) on \(M \) with \(\deg(f) = 1 \).

Proof. Recall that \(f \) is necessarily onto \(N \). We shall prove that \(\deg_f(q) \) is locally constant. Let \(f(p) = q \) and suppose that \(\nu_f(p) = 1 \). As remarked before, \(f \) is then an isomorphism from a neighborhood of \(p \) onto a neighborhood of \(q \). If, on the other hand, \(n = \nu_f(p) > 1 \), then each \(q' \) close but not equal to \(q \) has exactly \(n \) preimages \(\{ p'_j \}_{j=1}^n \) and \(\nu_f(p'_j) = 1 \) at each \(1 \leq j \leq n \). This proves that \(\deg_f(q) \) is locally constant and therefore globally constant by connectivity of \(N \). The statement concerning isomorphisms is evident. \(\square \)
As a slight digression, let us recall that notion of degree from topology and check that it agrees with the degree just defined. For the sake of this paragraph alone, let M, N be d-dimensional smooth orientable, compact manifolds. Then integration defines a linear isomorphism

$$H^d(M) \to \mathbb{R}, \quad \omega \mapsto \int_M \omega$$

where $H^d(M)$ is the de Rham space of d-forms modulo exact d-forms. Let $f : M \to N$ be a smooth map and $f_* : H^d(N) \to H^d(M)$ the induced map defined via the pull-back. There exists a nonzero real number denoted by $\deg(f)$ such that

$$\int_M f_*(\omega) = \deg(f) \int_N \omega \quad \forall \omega \in H^d(N)$$

Changing variables in charts, it is easy to verify that for any regular value $q \in N$ (which means that $Df(p) : T_pM \to T_pN$ is invertible for every p with $f(p) = q$)

$$\deg(f) = \sum_{p \in M : f(p) = q} \text{Ind}(f; p)$$

where $\text{Ind}(f; p) = \pm 1$ depending on whether $Df(p)$ preserves or reverses the orientation. By Sard’s theorem, the regular values are always dense in N (see Madsen–Tornehave for all this). Returning to Riemann surfaces, we see that this agrees exactly with our definition since every analytic $f : M \to N$ necessarily preserves the orientation in each tangent space.

We recall one more important tool from topology, namely the Euler characteristic. It says that every topological two-dimensional compact manifold M has an integer $\chi(M)$ associated with the, called the Euler characteristic, such that

$$V - E + F = \chi(M), \quad V = \text{vertices}, \ E = \text{edges}, \ F = \text{faces}$$

of an arbitrary triangulation of M (this is the homological characterization of $\chi(M)$). Another important theorem relates the Euler characteristic with the genus g of M: if we realize M as S^2 with g handles attached, then we have the Euler–Poincaré formula

$$\chi(M) = 2 - 2g$$

Finally, let us recall the cohomological characterization of $\chi(M)$: let M be a compact, smooth two-dimensional manifold and let $H^k(M)$ denote the de Rham spaces of closed k forms modulo exact forms, $0 \leq k \leq 2$. Then, with $\beta_k := \dim H^k(M)$,

$$\chi(M) = \beta_0 - \beta_1 + \beta_2$$

If M is orientable (as in the case of a Riemann surface), then it is easy to see that $\beta_0 = \beta_2 = 1$. Thus, $\beta_1 = 2g$ where g is the genus. Later, we shall recognize in this the Hodge theorem on the dimension of harmonic 1-forms.

Returning to (compact) Riemann surfaces from our detour into topology, let us now prove the Riemann–Hurwitz formula for branched covers. This simply refers to an analytic nonconstant map $f : M \to N$ from a compact Riemann surface M onto another compact surface N.
Theorem 4.11 (Riemann–Hurwitz). Let $f : M \to N$ be an analytic non-constant map between compact Riemann surfaces. Define the total branching number to be

$$B := \sum_{p \in M} (\nu_f(p) - 1)$$

Then

$$g_M - 1 = \deg(f)(g_N - 1) + \frac{1}{2}B$$

(4.3)

where g_M and g_N are the genera of M and N, respectively. In particular, B is always an even nonnegative integer.

Proof. Denote by B all $p \in M$ with $\nu_f(p) > 1$ (the branch points). Let T be a triangulation of N such that all $f(p), p \in B$ are vertices of T. Lift T to a triangulation \tilde{T} on M. If T has V vertices, E edges and F faces, then \tilde{T} has $nV - B$ vertices, nE edges, and nF faces. Therefore, by the Euler–Poincaré formula (4.2), and with $n = \deg(f)$,

$$2(1 - g_N) = V - E + F$$

$$2(1 - g_M) = nV - B - nE - nF = 2n(1 - g_N) - B$$

as claimed. \qed

Many Riemann surfaces M are generated as quotients of other surfaces N modulo an equivalence relation, i.e., $M = N/\sim$. A common way of defining the equivalence relation is via the action of a subgroup $G \subset \text{Aut}(N)$. Then $q_1 \sim q_2$ in N iff there exists some $g \in G$ with $gq_1 = q_2$. Let us state a theorem to this effect where $N = \mathbb{C}_\infty$. Examples will follow immediately after the theorem.

Theorem 4.12. Let $D \subset \mathbb{C}_\infty$ and $G \subset \text{Aut}(\mathbb{C}_\infty)$ with the property that

- $g(D) \subset D$ for all $g \in G$
- for all $g \in G, g \neq \text{id}$, all fixed points of g in \mathbb{C}_∞ lie outside of D
- let $K \subset D$ be compact. Then the cardinality of $\{g \in G \mid g(K) \cap K \neq \emptyset\}$ is finite.

Under these assumptions, the natural projection $\pi : D \to D/G$ is a covering map which makes D/G canonically into a Riemann surface.

Proof. By definition, the topology on D/G is the coarsest one that makes π continuous. In this case, π is also open; indeed, for every open $A \subset D$,

$$\pi^{-1}(\pi(A)) = \bigcup_{g \in G} g(A)$$

is open since $g(A)$ is open. Next, let us verify that the topology is Hausdorff. Suppose $\pi(z_1) \neq \pi(z_2)$ and define for all $n \geq 1$,

$$A_n := \{z \in D \mid |z - z_1| < \frac{r}{n}\} \subset D$$

$$B_n := \{z \in D \mid |z - z_2| < \frac{r}{n}\} \subset D$$
where $r > 0$ is sufficiently small. Define $K := A_1 \cup B_1$ and suppose that $A_n \cap B_n \neq \emptyset$ for all $n \geq 1$. Then for some $a_n \in A_n$ and $g_n \in G$ we have

$$g_n(a_n) \in B_n \quad \forall n \geq 1$$

Since in particular $g_n(K) \cap K \neq \emptyset$, we see that there are only finitely many possibilities for g_n and one of them therefore occurs infinitely often. Let us say that $g_n = g \in G$ for infinitely many n. Passing to the limit $n \to \infty$ implies that $g(z_1) = z_2$ or $\pi(z_1) = \pi(z_2)$, a contradiction. For all $z \in D$ we can find a small compact neighborhood of z denoted by $K_z \subset D$, so that $g(K_z) \cap K_z = \emptyset$ for all $g \in G$, $g \neq \text{id}$ (here we are using all three assumptions). Then $\pi : K_z \to K_z$ is the identity and therefore we can use the K_z as charts. Note that the transition maps are given by $g \in \text{Aut}(\mathbb{C}_\infty)$ (which are Möbius transformations) and are therefore holomorphic.

There are many natural examples to which this theorem applies:

1) $\mathbb{C}/\langle z \mapsto z+1 \rangle \simeq \mathbb{C}^*$ where the isomorphism is given by the exponential map $e^{2\pi i z}$. Similarly, $\mathbb{H}/\langle z \mapsto z+1 \rangle \simeq \mathbb{D}^*$.

2) $\mathbb{C}^*/\langle z \mapsto \lambda z \rangle \simeq \mathbb{C}/(z \mapsto z+1, z \mapsto z + \frac{i}{2\pi} \log \lambda)$ where $\lambda > 1$.

3) Let $\omega_1, \omega_2 \in \mathbb{C}^*$ be linearly independent over \mathbb{R}. Then $\mathbb{C}/\langle z \mapsto z + \omega_1, z \mapsto z + \omega_2 \rangle$ is a Riemann surface. It is the same as \mathbb{C}/Λ with the lattice

$$\Lambda = \{n\omega_1 + m\omega_2 \mid n, m \in \mathbb{Z}\} \quad (4.4)$$

For the remainder of this section, we let M be the torus of Example 3). Clearly,

$$\mathcal{M}(M) = \{f \in \mathcal{M}(\mathbb{C}) \mid f = f(\cdot + \omega_1) = f(\cdot + \omega_2)\}$$

These are called doubly periodic or elliptic functions. We claim that any such nonconstant function f satisfies $\deg(f) \geq 2$. Indeed, suppose $\deg(f) = 1$. Then, in the notation of Riemann–Hurwitz, $B = 0$ and therefore $1 - g_M = g_{\mathbb{S}^2} = 0$, a contradiction. Notice also, from Riemann–Hurwitz, that any elliptic function f with $\deg(f) = 2$ satisfies $B = 4$ and therefore has exactly four branch points each with valency 2. We now wish to find explicit examples of elliptic functions.

Proposition 4.13. For any $n \geq 3$, the series

$$f(z) = \sum_{w \in \Lambda} (z + w)^{-n}$$

defines a function $f \in \mathcal{M}(M)$ with $\deg(f) = n$. Furthermore, the Weierstrass function

$$\wp(z) := \frac{1}{z^2} + \sum_{w \in \Lambda^*} \left[(z + w)^{-2} - w^{-2}\right],$$

is an elliptic function of degree two. Here Λ is as in (4.4) and $\Lambda^* := \Lambda \setminus \{0\}$.
Proof. If $n \geq 3$, then we claim that
\[f(z) = \sum_{w \in \Lambda} (z + w)^{-n} \]
converges absolutely and uniformly on every compact set $K \subset \mathbb{C} \setminus \Lambda$. Indeed, there exists $C > 0$ such that
\[C^{-1}(|x| + |y|) \leq |x\omega_1 + y\omega_2| \leq C(|x| + |y|) \]
for all $x, y \in \mathbb{R}$. Hence, when $z \in \{x\omega_1 + y\omega_2 \mid 0 \leq x, y \leq 1\}$, then
\[|z + (k_1\omega_1 + k_2\omega_2)| \geq C^{-1}(|k_1| + |k_2|) - |z| \geq (2C)^{-1}(|k_1| + |k_2|) \]
provided $|k_1| + |k_2|$ is sufficiently large. Since
\[\sum_{|k_1| + |k_2| > 0} |k_1\omega_1 + k_2\omega_2|^{-n} < \infty \]
as long as $n > 2$, we conclude $f \in \mathcal{H}(\mathbb{C} \setminus \Lambda)$. Since $f(z) = f(z + \omega_1) = f(z + \omega_2)$ for all $z \in \mathbb{C} \setminus \Lambda$, it is clear that $f \in \mathcal{M}(\mathcal{M})$.

For the second part, we note that
\[\left| (z + w)^{-2} - w^{-2} \right| \leq \frac{|z||z + w|}{|w||z + w|^2} \leq \frac{C}{|w|^3} \]
promised $|w| > 2|z|$ so that the series defining Ψ converges absolutely and uniformly on compact subsets of $\mathbb{C} \setminus \Lambda$. We also observe that $f(z + w) = f(z)$ for all z in this set and any choice of $w \in \Lambda$ — the proof of this periodicity requires a simple rearrangement of the defining series that we leave to the reader. \qed

The Ψ function has many remarkable properties, the most basic of which is probably the following result. For another result see Problem 43.

Lemma 4.14. With Ψ as before, one has
\[(\Psi'(z))^2 = 4(\Psi(z) - e_1)(\Psi(z) - e_2)(\Psi(z) - e_3) \quad (4.5) \]
where $e_1 = \Psi(\omega_1/2)$, $e_2 = \Psi(\omega_2/2)$, and $e_3 = \Psi((\omega_1 + \omega_2)/2)$.

Proof. By inspection,
\[\Psi'(z) = -2 \sum_{z \in \Lambda} (z + w)^{-3} \]
is an odd function $\in \mathcal{M}(\mathcal{M})$ of degree three. Thus,
\[\Psi'(\omega_1/2) = -\Psi'(-\omega_1/2) = -\Psi'(\omega_1/2) = 0 \]
Similarly, $\Psi'(\omega_2/2) = \Psi'((\omega_1 + \omega_2)/2) = 0$. In other words, the three points $\omega_1/2, \omega_2/2, (\omega_1 + \omega_2)/2$ are the three zeros of Ψ' and thus also the unique points where Ψ has valency two apart from $z = 0$. Denoting the right-hand side of (4.5) by $F(z)$, this implies that $\Psi'(z)/F(z) \in \mathcal{H}(\mathcal{M})$ and therefore equals a constant. Considering the expansion of $\Psi'(z)$ and $F(z)$, respectively, around $z = 0$ shows that the value of this constant equals 1, as claimed. \qed
Chapter 5

Differentials on Riemann surfaces

We already observed that every Riemann surface is orientable as a smooth two-dimensional manifold. Next, we state another important fact. Throughout, M and N will denote Riemann surfaces.

Lemma 5.1. Every tangent space $T_p M$ is in a natural way a complex vector space. Moreover, if $f : M \to N$ is a C^1 map between Riemann surfaces, then f is analytic iff $Df(p)$ is complex linear as a map $T_p M \to T_{f(p)} N$ for each $p \in M$.

Proof. First note that $\langle \vec{v}, \vec{w} \rangle$ is well-defined in $T_p M$. Simply measure this angle in any chart — because of conformality of the transition maps this does not depend on the choice of chart. The sign of the angle is also well-defined because of the orientation on M. Now let R be a rotation in $T_p M$ by $\frac{\pi}{2}$ in the positive sense. Then we define $i\vec{v} := R\vec{v}$.

It is clear that this turns each $T_p M$ into a complex one-dimensional vector space. Since $f : U \to \mathbb{R}^2$ with $f \in C^1(U), U \subset \mathbb{C}$ open is holomorphic iff Df is complex linear, we see via charts that the same property lifts to the Riemann surface case.

As a smooth manifold, M carries k-forms for each $0 \leq k \leq 2$. We allow these forms to be complex valued and denote the respective spaces by

$$\Omega^0(M; \mathbb{C}), \quad \Omega^1(M; \mathbb{C}), \quad \Omega^2(M; \mathbb{C})$$

Clearly, $\Omega^0(M; \mathbb{C})$ are simply C^∞ functions on M, whereas because of orientability $\Omega^2(M; \mathbb{C})$ contains a 2-form denoted by vol which never vanishes; hence, every other element in $\Omega^2(M; \mathbb{C})$ is of the form $f \text{vol}$ where $f \in \Omega^0(M; \mathbb{C})$. This leaves $\Omega^1(M; \mathbb{C})$ as only really interesting object here. By definition, each $\omega \in \Omega^1(M; \mathbb{C})$ defines a real-linear functional ω_p on $T_p M$. We will be particularly interested in those that are complex linear. We start with a simple observation from linear algebra.
Lemma 5.2. If $T : V \to W$ is a \mathbb{R}-linear map between complex vector spaces, then there is a unique representation $T = T_1 + T_2$ where T_1 is complex linear and T_2 complex anti-linear. This means that $T_2(\lambda \vec{v}) = \lambda T_2(\vec{v})$.

Proof. Uniqueness follows since a \mathbb{C}-linear map which is simultaneously \mathbb{C}-anti linear vanishes identically. For existence, set

$$T_1 = \frac{1}{2}(T - iT) \quad T_2 = \frac{1}{2}(T + iT)$$

Then $T_1 i = iT_1$ and $T_2 i = -iT_2$, $T = T_1 + T_2$, as desired.

As an application, consider the following four complex valued maps on $U \subset \mathbb{R}^2$ where U is any open set: π_1, π_2, z, \bar{z} which are defined as follows

$$\pi_1(x, y) = x, \quad \pi_2(x, y) = y, \quad z(x, y) = x + iy, \quad \bar{z} = x - iy$$

Identifying the tangent space of U with \mathbb{R}^2 at every point the differentials of each of these maps correspond to the following constant matrices

$$d\pi_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad d\pi_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad dz = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad d\bar{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Let us now write $\omega \in \Omega^1(M; \mathbb{C})$ in local coordinates

$$\omega = a \, dx + b \, dy = \frac{1}{2}(a - ib) \, dz + \frac{1}{2}(a + ib) \, d\bar{z} = u \, dz + v \, d\bar{z}$$

Of course, this is exactly the decomposition of Lemma 5.2 in each tangent space.

A very important special case if $\omega = df$ with $f \in \Omega^0(M; \mathbb{C})$. Then

$$df = \partial_z f \, dz + \partial_{\bar{z}} f \, d\bar{z}$$

$$\partial_z f = \frac{1}{2} (\partial_x f - i \partial_y f), \quad \partial_{\bar{z}} f = \frac{1}{2} (\partial_x f + i \partial_y f)$$

If $f \in \mathcal{H}(M)$, then df needs to be complex linear. In other words, $\partial_{\bar{z}} f = 0$ which are precisely the Cauchy–Riemann equations. In this notation, it is easy to give a one line proof of Cauchy’s theorem: Let $f \in \mathcal{H}(U)$ where $U \subset \mathbb{C}$ is a domain with piecewise C^1 boundary and $f \in C^1(\bar{U})$. Then

$$\int_{\partial U} f \, dz = \int_U d(f \, dz) = \int_U \partial_z f \, d\bar{z} \wedge dz = 0$$

We leave it to the reader to verify the chain rules

$$\partial_z (g \circ f) = (\partial_w g) \circ f \, \partial_z f + (\partial_{\bar{w}} g) \circ f \, \partial_{\bar{z}} f$$

$$\partial_{\bar{z}} (g \circ f) = (\partial_w g) \circ f \, \partial_{\bar{z}} f + (\partial_{\bar{w}} g) \circ f \, \partial_z f$$

as well as the representation of the Laplacean $\Delta = 4 \frac{\partial^2}{\partial z \partial {\bar{z}}}$.

Definition 5.3. The holomorphic differentials on a Riemann surface M, denoted by $\mathcal{H} \Omega^1(M)$, are precisely those $\omega \in \Omega^1(M; \mathbb{C})$ so that $\omega = u \, dz$ in arbitrary local coordinates with u holomorphic. The meromorphic differentials, denoted by $\mathcal{M} \Omega^1(M)$, are all $\omega \in \mathcal{H} \Omega^1(M; \mathbb{C} \setminus \mathcal{S})$ where $\mathcal{S} \subset M$ is discrete and so that in local coordinates around an arbitrary point of M one has $\omega = u \, dz$ where u is meromorphic. The points of \mathcal{S} will be called poles of ω.

Note that we are assuming here that those points of \mathcal{S} which are removable singularities of u have been removed. Obvious examples of holomorphic and meromorphic differentials, respectively, are given by df where $f \in \mathcal{H}(M)$ or $f \in \mathcal{M}(M)$. Let us introduce the following terminology:

Definition 5.4. We say that $N \subset M$ is a Stokes region if \overline{N} is compact and ∂N is piecewise C^1. This means that ∂N is the finite union of curves $\gamma_j : [0,1] \to M$ which are C^1 on the closed interval $[0,1]$.

We have the following simple but important properties:

Proposition 5.5. Suppose $\omega \in \mathcal{H} \Omega^1(M)$. Then $d\omega = 0$. Thus, $\int_{\partial N} \omega = 0$ for every Stokes region $N \subset M$. Moreover, for any closed curve γ the integral $\oint_{\gamma} \omega$ only depends on the homology class of γ. In particular, $\oint_{\gamma} \omega = \oint_{\eta} \omega$ if γ and η are homotopic closed curves. Finally, if c is a curve with initial point p and endpoint q, then

$$\int_{c} \omega = f_1(q) - f_0(p)$$

where $df_0 = \omega$ locally around p and f_1 is obtained through via continuation from f_0 along c. In particular, $df_1 = \omega$ locally around q.

Proof. Since $\omega = u \, dz$ in a chart, one has

$$d\omega = \partial_\xi u \, d\xi \wedge dz = 0$$

as claimed. The other properties are immediate consequences of this via Poincare’s lemma (closed means locally exact) and Stokes’ integral theorem. We skip the details.

For meromorphic differentials, we have the following facts.

Proposition 5.6. Suppose $\omega \in \mathcal{M} \Omega^1(M)$ with poles $\{p_j\}_{j=1}^J$. Then at each of these their order $\text{ord}(\omega, p_j) \in \mathbb{Z}^-$ and their residue $\text{res}(\omega, p_j) \in \mathbb{C}$ are well-defined. In fact,

$$\text{res}(\omega, p_j) = \frac{1}{2\pi i} \oint_{c} \omega$$

where c is any small loop around p_j. Given any Stokes region $N \subset M$ so that ∂N does not contain any pole of ω, we have

$$\frac{1}{2\pi i} \oint_{\partial N} \omega = \sum_{p \in N} \text{res}(\omega, p) \quad (5.1)$$
Finally, if \(M \) is compact, then
\[
\sum_{p \in M} \text{res}(\omega; p) = 0
\]
for all \(\omega \in \mathcal{M}\Omega^1(M) \). With \(N \subset M \) a Stokes region and \(f \in \mathcal{M}(M) \),
\[
\frac{1}{2\pi i} \oint_{\partial N} \frac{df}{f} = \#\{p \in N \mid f(p) = 0\} - \#\{p \in N \mid p \text{ is a pole of } f\}
\]
assuming that no zero or pole lies on \(\partial N \).

Proof. Let \(\omega = u \, dz \) with \(u(p) = \sum_{n=-N}^{\infty} a_n \, z^n \) in local coordinates \((U, z)\) around \(p_j \) with \(z(p_j) = 0 \) and \(a_N \neq 0 \). Note that \(n \) does not depend on the choice of the chart but the coefficients do in general. However, since
\[
a_{-1} = \frac{1}{2\pi i} \oint_C \omega
\]
this coefficient does not depend on the chart and it is the residue. The “residue theorem” \((5.1)\) follows from Stokes applies to \(N' := N \setminus D_j \) where \(D_j \) are small parametric disks centered at \(p_j \in N \). Finally, if \(M \) is compact, then we triangulate \(M \) in such a way that no edge of the triangulation passes through a pole (there are only finitely many of them). This follows simply by setting \(\omega = \frac{df}{f} \) in \((5.1)\). \(\square \)

In the following chapter we shall prove that to a given finite sequence \(\{p_j\} \) of points and complex numbers \(\{c_j\} \) adding up to zero at these points we can find a meromorphic differential that has simple poles at exactly these points with residues equal to the \(c_j \). This will be based on the crucial Hodge theorem to which we now turn.

Definition 5.7. To every \(\omega \in \Omega^1(M; \mathbb{C}) \) we associate a one–form \(*\omega\) defined as follows: if \(\omega = u \, dz + v \, \bar{d}z = f \, dx + g \, dy \) in local coordinates, then
\[
*\omega := -iu \, dz + iv \, \bar{d}z = -g \, dx + f \, dy
\]
Moreover, if \(\omega, \eta \in \Omega^1_{\text{comp}}(M; \mathbb{C}) \) (the forms with compact support), we set
\[
\langle \omega, \eta \rangle := \int_M \omega \wedge \overline{\eta}
\]
(5.2)

This defines an inner product on \(\Omega^1_{\text{comp}}(M; \mathbb{C}) \). The completion of this space is denoted by \(\Omega^1_M(M; \mathbb{C}) \).

Some comments are in order: first, \(*\omega\) is well-defined as can be seen from the change of coordinates \(z = z(w) \). Then
\[
\omega = u \, dz + v \, \bar{d}z = uz' \, dw + v \bar{z}' \, d\bar{z}
\]
and $\ast \omega$ transforms the same way. Second, it is evident that (5.2) does not depend on coordinates and, moreover, if ω, η are supported in U where (U, z) is a chart, then with $\omega = u \, dz + v \, d\bar{z}$, $\eta = r \, dz + s \, d\bar{z}$ we obtain

$$\omega \wedge \overline{\eta} = i(\overline{ur} + v \overline{s}) \, dz \wedge d\bar{z} = 2(\overline{ur} + v \overline{s}) \, dx \wedge dy$$

and in particular,

$$\langle \omega, \eta \rangle = 2 \int_U (\overline{ur} + v \overline{s}) \, dx \wedge dy$$

which is obviously a positive definite scalar product locally on U. By a partition of unity, this shows that indeed (5.2) is a scalar product on $\Omega^1_{\text{comp}}(M)$ and, moreover, the abstract completion $\Omega^1_{\text{loc}}(M)$ consists of all 1-forms ω which in charts have measurable L^2_{loc} coefficients and such that $\|\omega\|_2^2 := \langle \omega, \omega \rangle < \infty$.

Let us state some easy properties of the Hodge-\ast operator.

Lemma 5.8. For any $\omega, \eta \in \Omega^1(M)$ we have

$$\ast \omega = \overline{\ast \omega}, \quad \ast \ast \omega = -\omega, \quad (\ast \omega, \ast \eta) = \langle \omega, \eta \rangle$$

Proof. This follows immediately from the representation in local coordinates. \qed

We now come to the very important topic of harmonic functions and forms.

Definition 5.9. We say that $f \in \Omega^0(M; \mathbb{C})$ is harmonic iff f is harmonic in every chart. We say that $\omega \in \Omega^1(M; \mathbb{C})$ is harmonic iff $d\omega = \ast d\omega = 0$, i.e., iff ω is both closed and co-closed. We denote the harmonic forms on M by $\mathcal{H}(M; \mathbb{R})$ if they are real-valued and by $\mathcal{H}(M; \mathbb{C})$ if they are complex-valued.

Let us state some basic properties of harmonic functions, mainly the important maximum principle.

Lemma 5.10. Suppose $f \in \Omega^0(M; \mathbb{C})$ is harmonic with respect to some atlas. Then it is harmonic with respect the any equivalent atlas and therefore, also with respect to the conformal structure. Moreover the maximum principle holds: if such an f is real-valued and the open connected set $U \subset M$ has compact closure in M, then

$$\min_{\partial U} f \leq f(p) \leq \max_{\partial U} f \quad \forall \, p \in U$$

with equality being attained at some $p \in U$ iff f = const. In particular, if M is compact, then f is constant.

Proof. Under the conformal change of coordinates $w = w(z)$ we have

$$\frac{\partial^2 f}{\partial z \partial \bar{z}} = |w'(z)|^2 \frac{\partial^2 f}{\partial w \partial \bar{w}}$$

Thus, harmonicity is preserved under conformal changes of coordinates as claimed. For the maximum principle, we note that $f : U \to \mathbb{R}$ is harmonic in a chart and
attains a local maximum in that chart, then it is constant on the chart by the maximum principle for harmonic functions on open sets of \mathbb{C}. But then f would have to be constant on all of U by connectedness and the fact that harmonic functions in the plane that are constant on some open subset of a planar domain have to be constant on the entire domain. Hence we have shown that f cannot attain a local maximum on U. Finally, if M is compact, then by taking $U = M$ we are done.

For harmonic forms we have the following simple properties.

Lemma 5.11. Let $\omega \in h(M; \mathbb{R})$ (or $h(M; \mathbb{C})$). Then, locally around every point of M, $\omega = df$ where f is real-valued (or complex-valued) and harmonic. If M is simply connected, then $\omega = df$ where f is a harmonic function on all of M. Conversely, if f is a harmonic function on M, then df is a harmonic 1-form. If u is a harmonic (and either real- or complex-valued) function, then $\omega = \partial \bar{z} \partial z u \, dz \in H\Omega^1(M)$.

Proof. Since ω is locally exact, we have $\omega = df$ locally with f being either real- or complex-valued depending on whether ω is real- or complex-valued. Then ω is co-closed iff $d^* df = 0$. In local coordinates, this is the same as

$$d(-f_y \, dx + f_x \, dy) = (f_{xx} + f_{yy}) \, dx \wedge dy = 0$$

which is the same as f being harmonic. This also proves the converse. If M is simply connected, then f is a global primitive of ω. For the final statement, note that

$$\partial \bar{z} \partial z u = 0$$

since u is harmonic. □

Here is a useful characterization of harmonic differentials.

Lemma 5.12. Let $\omega \in \Omega^1(M; \mathbb{R})$ and suppose that $\omega = a \, dx + b \, dy$ in some chart (U, z). Then ω is harmonic iff $f := a - ib$ is holomorphic on $z(U)$.

Proof. Since

$$d\omega = (-a_y + b_x) \, dx \wedge dy, \quad d^* \omega = (b_y + a_x) \, dx \wedge dy$$

we see that ω is harmonic iff $a, -b$ satisfy the Cauchy–Riemann system on $z(U)$ which is equivalent to $a - ib$ being holomorphic on $z(U)$. □

Next, we make the following observation linking holomorphic and harmonic differentials.

Lemma 5.13. Let $\omega \in \Omega^1(M; \mathbb{C})$. Then

1. ω is harmonic iff $\omega = \alpha + \bar{\beta}$ where $\alpha, \beta \in H\Omega^1(M)$

2. $\omega \in H\Omega^1(M)$ iff $d\omega = 0$ and $* \omega = -i \omega$ iff $\omega = \alpha + i*\alpha$ where $\alpha \in h(M; \mathbb{R})$
In particular, every holomorphic differential is harmonic and the only real-valued holomorphic differential is zero.

Proof. Write $\omega = udz + vd\bar{z}$ in local coordinates. For 1.), observe that

$$
\begin{align*}
\omega & = u dz + v d\bar{z} \\
\omega & = (\bar{z}u + \partial_z v) dz \\
\omega & = i(\bar{z}u + \partial_z v) dz
\end{align*}
$$

both vanish identically iff $\partial_z u = 0$ and $\partial_z v = 0$. In other words, iff $\alpha = udz$ and $\beta = v dz$ are both holomorphic differentials.

For 2.), ω is holomorphic iff $v = 0$ and $\partial_z u = 0$ iff $d\omega = 0$ and $\ast \omega = \ast - i\alpha = -i\omega$. For the converse, set $\alpha = \frac{1}{2}(\omega + \bar{\omega})$. Then $\ast \alpha = \frac{1}{2}(-\omega + \bar{\omega})$, $\alpha + i\ast \alpha = \omega$, and $\alpha \in h(M; \mathbb{R})$ as desired.

Finally, it is clear from 1.) that every holomorphic differential is also harmonic. On the other hand, if $\omega \in H\Omega^1(M)$ and real-valued, then we can write

$$
\omega = \alpha + i\ast \alpha = \omega = \alpha - i\ast \alpha
$$
or $\ast \alpha = 0$ which is the same as $\alpha = 0$.

In the simply connected compact case it turns out that there are no non zero harmonic or holomorphic differentials.

Corollary 5.14. If M is compact and simply connected, then

$$
\begin{align*}
\mathfrak{h}(M; \mathbb{R}) & = \mathfrak{h}(M; \mathbb{C}) = \mathcal{H}\Omega^1(M) = 0
\end{align*}
$$

Proof. Any harmonic 1–form ω can be written globally on M as $\omega = df$ with f harmonic. But then $f = \text{const}$ by the maximum principle and so $\omega = 0$. Consequently, the only harmonic 1–form is also zero.

The obvious example for this corollary is of course $M = \mathbb{C}P^1$. Let us now consider some examples to which Corollary 5.14 does not apply. In the case of $M \subset \mathbb{C}$ simply connected we have in view of Lemmas 5.11–5.13,

$$
\begin{align*}
\mathcal{H}\Omega^1(M) & = \{ df \mid f \in \mathcal{H}(M) \} \\
\mathfrak{h}(M; \mathbb{C}) & = \{ df + d\bar{g} \mid f, g \in \mathcal{H}(M) \} \\
\mathfrak{h}(M; \mathbb{R}) & = \{ a dx + b dy \mid a = \text{Re} (f), b = -\text{Im} (f), f \in \mathcal{H}(M) \} \\
& = \{ df + d\bar{f} \mid f \in \mathcal{H}(M) \}
\end{align*}
$$

In these examples harmonic (or holomorphic) 1–forms are globally differentials of harmonic (or holomorphic) functions.

For a non-simply connected example, take $M = \{ r_1 < |z| < r_2 \}$ with $0 \leq r_1 < r_2 \leq \infty$. In these cases, a closed form ω is exact iff

$$
\int_{\gamma_r} \omega = 0, \quad \gamma_r(t) = re^{2\pi it}
$$
for one (and thus every) \(\gamma_r \subset M \) (or any closed curve in \(M \) that winds around 0). This implies that every closed \(\omega \) can be written uniquely as

\[
\omega = k \, d\theta + df, \quad k = \frac{1}{2\pi} \oint_{\gamma_r} \omega, \quad f \in C^\infty(M)
\]

and, with \(\theta \) being any branch of the polar angle,

\[
d\theta := -\frac{y}{r^2} \, dx + \frac{x}{r^2} \, dy, \quad r^2 = x^2 + y^2
\]

We remark that \(d\theta \in \mathfrak{h}(M; \mathbb{R}) \) since (any branch of) the polar angle is harmonic.

The reader familiar with de Rham cohomology will recognize the statement that \(H^1(\mathbb{R}^2 \setminus \{0\}) \simeq \mathbb{R} \). The upshot is that

\[
\mathfrak{h}(M; \mathbb{R}) = \{ df + k \, d\theta \mid f \text{ harmonic and real-valued on } M, \ k \in \mathbb{R} \}
\]

\[
\mathfrak{h}(M; \mathbb{C}) = \{ df + k \, d\theta \mid f \text{ harmonic and complex-valued on } M, \ k \in \mathbb{C} \}
\]

\[
\mathcal{H} \Omega^1(M) = \{ f_z \, dz + ik \frac{dz}{z} \mid f \text{ harmonic, real-valued on } M, \ k \in \mathbb{R} \} \quad (5.4)
\]

\[
= \{ dg + \kappa \frac{dz}{z} \mid g \in \mathcal{H}(M), \ \kappa \in \mathbb{C} \} \quad (5.5)
\]

The representation (5.4) follows from Lemma 5.13, whereas for (5.5) we note that \(\omega \in \mathcal{H} \Omega^1(M) \) is exact iff

\[
\oint_{\gamma_r} \omega = 0
\]

Hence, we set

\[
\kappa = \frac{1}{2\pi i} \oint_{\gamma_r} \omega
\]

Applying the same reasoning to (5.4), we first observe that

\[
\oint_{\gamma_r} f_z \, dz = -\oint_{\gamma_r} f_z \, d\bar{z} = -\oint_{\gamma_r} f_z \, dz \in i\mathbb{R}
\]

since \(f \) is real-valued. Conversely, if \(a \in \mathbb{R} \), then there exists \(f \) real-valued and harmonic on \(M \) such that

\[
\oint_{\gamma_r} f_z \, dz = 2\pi i a
\]

Indeed, simply set \(f(z) = a \log |z| \) for which \(f_z(z) \, dz = a \frac{z}{r^2} \, dz \). This explains why it suffices to add \(ik \frac{dz}{z} \) with \(k \in \mathbb{R} \) in (5.4).

As a final example, let \(M = \mathbb{C}/\langle 1, \tau \rangle \) where \(\langle 1, \tau \rangle \subset \text{Aut}(\mathbb{C}) \) is the group generated by \(z \mapsto z + 1, \ z \mapsto z + \tau \) and \(\text{Im} \ \tau > 0 \). Then any \(\omega \in \mathfrak{h}(M; \mathbb{R}) \) lifts to the universal cover of \(M \) which is \(\mathbb{C} \). Thus, we can write \(\omega = a \, dx + b \, dy \) where \(a - ib \) is an analytic function on \(M \) and thus constant. Hence,

\[
\dim_{\mathbb{R}} \mathfrak{h}(M; \mathbb{R}) = \dim_{\mathbb{C}} \mathfrak{h}(M; \mathbb{C}) = 2 = 2 \dim C \mathcal{H} \Omega^1(M)
\]
Any reader familiar with de Rham’s and Hodge’s theorem will recognize the statement here that \(H^1(M) \simeq \mathbb{R}^{2g} \) where \(M \) is a compact surface with genus \(g \) (but we are not assuming familiarity with these facts).

In the following chapter we shall prove a version of Hodge’s theorem. More precisely, we will obtain the following decomposition theorem on a Riemann surface

\[
\Omega^1_2(M; \mathbb{R}) = E \oplus *E \oplus h^2(M; \mathbb{R})
\]

(5.6)

Here \(\Omega^1_2(M; \mathbb{R}) \) are the square-integrable, real-valued, 1–forms from above, \(h^2(M; \mathbb{R}) := h \cap \Omega^1_2(M; \mathbb{R}) \), and

\[
E := \left\{ df \mid d \in \Omega^0_{\text{comp}}(M; \mathbb{R}) \right\}, \quad *

E := \left\{ *df \mid d \in \Omega^0_{\text{comp}}(M; \mathbb{R}) \right\}
\]

where the closure is meant in the sense of \(\Omega^1_2(M) \). We conclude this chapter by applying (5.6) to some of those examples that we have just reviewed.

We begin with \(M = \mathbb{C} \), and pick any \(\omega \in h^2(\mathbb{C}) \). In view of (5.3), \(\omega = a \, dx + b \, dy \) with \(a, b \) being harmonic and \(L^2 \) bounded:

\[
\int_{\mathbb{R}^2} (|a|^2 + |b|^2) \, dx \, dy < \infty
\]

We claim that necessarily \(a = b = 0 \). Indeed, from the mean-value theorem

\[
|a(z)|^2 = \left| \frac{1}{|D(z, r)|} \int_{D(z, r)} a(\zeta) \, d\xi \, d\eta \right|^2 \leq \frac{1}{|D(z, r)|} \int_{D(z, r)} |a(\zeta)|^2 \, d\xi \, d\eta \leq \frac{\|a\|^2}{|D(z, r)|} \to 0
\]

as \(r \to \infty \). So \(h(M) = \{0\} \) in that case. Hence, by (5.6) every \(L^2 \) form \(\omega \) is the sum of an exact and a co-exact form (more precisely, up to \(L^2 \) closure). Let us understand this first for smooth, compactly supported \(\omega \). Thus, let \(\omega = a \, dx + b \, dy \) with \(a, b \) being harmonic and \(L^2 \) bounded:

\[
\omega = df + *dg
\]

(5.7)

Since \(\mathbb{C} \) is simply connected, this is equivalent to writing \(\omega = \alpha + \beta \) where \(d\alpha = 0 \) and \(d*\beta = 0 \). This in turn shows that (5.7) is equivalent to writing a smooth, compactly supported vector field as the sum of a divergence-free field and a curl-free field. To find \(f, g \), we apply \(d \) and \(d* \) to (5.7) which yields

\[
\Delta f = a_x + b_y, \quad \Delta g = -a_y + b_x
\]

(5.8)

We therefore need to solve the Poisson equation \(\Delta f = h \) with \(h \in C^\infty_{\text{comp}}(\mathbb{R}^2) \). A solution to this equation is not unique; indeed, we can add linear polynomials to \(f \). On the other hand, solutions that decay at infinity are necessarily unique from the maximum principle. To obtain existence, we invoke the fundamental solution of the Laplacian on \(\mathbb{R}^2 \), which is \(\Gamma(z) = \frac{1}{2\pi} \log |z| \). This means that
\(\Delta \Gamma = \delta_0 \) in the sense of distributions. In other words, it means that \(f = \Gamma \ast h \) or

\[
f(z) = \frac{1}{2\pi} \iint_{\mathbb{R}^2} h(\zeta) \log |z - \zeta| \, d\xi \, d\eta = \frac{1}{2\pi} \iint_{\mathbb{R}^2} h(z - \zeta) \log |\zeta| \, d\xi \, d\eta \quad (5.9)
\]

(with \(\zeta = \xi + i\eta \)) and \(h \in C_\text{comp}^{\infty}(\mathbb{R}^2) \) solves \(\Delta f = h \). To see this, write

\[
\Delta f(z) = \frac{1}{2\pi} \iint_{\mathbb{R}^2} \Delta \zeta h(z - \zeta) \log |\zeta| \, d\xi \, d\eta
\]

and apply Green’s identity (which itself follows from Stokes theorem on manifolds) to conclude that (and using that \(\log |\zeta| \) is harmonic away from zero)

\[
\begin{align*}
\iint_{|z - \zeta| > \varepsilon} \log |\zeta| \, \Delta \zeta h(z - \zeta) \, d\xi \, d\eta \\
\iint_{|z - \zeta| > \varepsilon} \left[\log |\zeta| \Delta \zeta h(z - \zeta) - h(z - \zeta) \Delta \zeta \log |\zeta| \right] \, d\xi \, d\eta \\
= \int_{|z - \zeta| = \varepsilon} \left[\log |\zeta| \frac{\partial}{\partial n_{\zeta}} h(z - \zeta) - h(z - \zeta) \frac{\partial}{\partial n_{\zeta}} \log |\zeta| \right] \, ds
\end{align*}
\]

where \(n \) is the outward pointing norm vector relative to the region \(|z - \zeta| > \varepsilon \).

Thus,

\[
\frac{\partial}{\partial n_{\zeta}} \log |\zeta| = -\frac{1}{|\zeta|}
\]

In conclusion, letting \(\varepsilon \to 0 \) yields \(\Delta f = h \) as desired. We remark that in dimensions \(n \geq 3 \) the fundamental solutions of \(\Delta \) are \(c_n |x - y|^{2-n} \) with a dimensional constant \(c_n \) by essentially the same proof. In \(n = 1 \) a natural choice is \(x_+ \) or anything obtained from this by adding a linear function.

By inspection of our solution formula (5.9),

\[
f(z) = \frac{1}{\pi} \langle h \rangle \log |z| + O(1/|z|) \text{ as } |z| \to \infty
\]

where \(\langle h \rangle \) is the mean (i.e., the integral) of \(h \). In fact, \(f \) is the unique solution which is of the form

\[
f(z) = k \log |z| + o(1) \text{ as } |z| \to \infty
\]

for some constant \(k \in \mathbb{R} \). This follows from the fact that the only harmonic function of this form vanishes identically (use the mean value property). In particular, the solution \(f \) of \(\Delta f = h \) and \(h \) as above decays at infinity if and only if \(\langle h \rangle = 0 \). Returning to our discussion of Hodge’s decomposition, recall that \(h \) is given by the right-hand sides of (5.8). Evidently, in that case \(\langle h \rangle = 0 \) so
that (5.9) yields smooth functions \(f, g \) decaying like \(1/|z| \) at infinity and which solve (5.8). It remains to check that indeed
\[
\omega = df + *dg = (f_x - g_y)dx + (f_y + g_x)dy
\]
To this end we simply observe that
\[
(f_x - g_y)(z) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \Delta a(\zeta) \log |z - \zeta| d\xi d\eta = a(z)
\]
\[
(f_y + g_x)(z) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \Delta b(\zeta) \log |z - \zeta| d\xi d\eta = b(z)
\]
To obtain the final two equality signs no calculations are necessary; in fact, since \(a \) vanishes at infinity, the only decaying solution to \(\Delta f = \Delta a \) is \(f = a \) and the same holds for \(b \). To summarize: we have shown that every compactly supported \(\omega \in \Omega^1(\mathbb{C}; \mathbb{C}) \) is the sum of an exact and a co-exact smooth 1–form and each of these summands typically decay only like \(z^{-2} \) (as differentials of functions decaying like \(|z|^{-1} \)). It is important to note that this rate of decay is square integrable at infinity.

Any reader familiar with the Sobolev space \(H^1(\mathbb{R}^2) \) and the \(L^2 \) boundedness of the double Riesz transforms will have no difficulty obtaining the full Hodge decomposition theorem 5.6 for \(M = \mathbb{C} \) by adapting our discussion to square integrable 1–forms instead of smooth compactly supported ones.

Next, we turn to the compact, simply connected case \(M = \mathbb{C}P^1 \simeq \mathbb{C}_\infty \simeq S^2 \).

Since we already observed that \(h(M) = \{0\} \) in this case, we see that trivially \(h_2(M) = \{0\} \) so that Hodge’s decomposition (5.6) again reduces to
\[
\Omega^1_2(M) = E \oplus *E
\]
Indeed, it is easy to prove that every \(\omega \in \Omega^1(S^2) \) is of the form
\[
\omega = df + *dg, \quad f, g \in C^\infty(S^2)
\]
Applying \(d \) to this yields \(d\omega = \Delta_{S^2} g \text{ vol} \) where \(\text{vol} \) is the standard volume form on \(S^2 \) and \(\Delta_{S^2} \) is the Laplace–Beltrami operator on \(S^2 \). Using an expansion into spherical harmonics yields a solution since the necessary and sufficient integrability condition \(\int_{S^2} d\omega = 0 \) clearly holds. This means that \(\omega - *dg \) is closed and thus \(\omega = df + *dg \) for some smooth \(f \).

As a third example, consider
\[
M = \mathbb{T}^2 = \mathbb{C}/\mathbb{Z}^2 = \mathbb{C}/\langle z \mapsto z + 1, z \mapsto z + i \rangle
\]
In view of our previous discussion of the harmonic forms in this case, (5.6) reduces the following: any \(\omega = a \, dx + b \, dy \) with smooth, \(\mathbb{Z}^2 \)-periodic functions \(a, b \) can be written as
\[
a \, dx + b \, dy = df + *dg + c_1 \, dx + c_2 \, dy \quad (5.10)
\]
where \(f, g \) are smooth, \(\mathbb{Z}^2 \)-periodic functions and suitable constants \(c_1, c_2 \). In fact, it will turn out that

\[
c_1 = \int_0^1 \int_0^1 a(x, y) \, dxdy, \quad c_2 = \int_0^1 \int_0^1 b(x, y) \, dxdy
\]

As in the discussion of the whole plane, finding \(f, g \) reduces to a suitable Poisson equation. Hence, let us first understand how to solve \(\Delta f = h \) on \(\mathbb{T}^2 \) with smooth \(h \). Integrating over \(\mathbb{T}^2 \) shows that the vanishing condition \(\int_0^1 \int_0^1 h(x, y) \, dxdy = 0 \) is necessary. It is also sufficient for solvability; indeed, any such smooth \(h \) has a convergent Fourier expansion

\[
h(x, y) = \sum_{n_1, n_2} \hat{h}(n_1, n_2) e(n_1 + n_2)
\]

where \(\hat{h}(0, 0) = 0 \) (and with \(e(x) := e^{2\pi ix} \)). The solution to \(\Delta f = h \) is therefore given by

\[
f(x, y) = -\sum_{n_1, n_2} \frac{\hat{h}(n_1, n_2)}{4\pi^2(n_1^2 + n_2^2)} e(n_1 + n_2)
\]

which is again smooth. We write this schematically as \(f = \Delta^{-1} h \). As in the case of \(M = \mathbb{C} \), solving (5.10) reduces to solving (5.8) on \(\mathbb{T}^2 \). Notice that our vanishing condition is automatically satisfied and we therefore obtain smooth solutions \(f, g \). In order to conclude that \(\omega = df + \ast dg \) it remains to check that \(a = \Delta^{-1} \Delta a \) and the same for \(b \). This is true if \(a \) and \(b \) have vanishing means and confirms our choice of \(c_1, c_2 \) above. Here we see an example where \(\mathfrak{h}(M) = \mathfrak{h}^2(M) \) plays a topological role. This is typical of the compact case but not of the non-compact case.

Our fourth example is the disk \(\mathbb{D} \) (which is the same as the upper half-plane or any other simply connected true subdomain of \(\mathbb{C} \)). In this case there is not only an abundance of harmonic and holomorphic one-forms, but also of square integrable ones. First, we remark that

\[
E = \{ df \mid f \in H^1_0(\mathbb{D}) \}
\]

where \(H^1_0(\mathbb{D}) \) is the usual Sobolev space with vanishing trace on \(\partial \mathbb{D} \) (see Evans, for example). Second, let us reformulate (5.6) as an equivalent fact for vector fields \(\tilde{v} = (v_1, v_2) \in L^2(\mathbb{D}) \) rather than forms: there exist \(f, g \in H^1_0(\mathbb{D}) \), as well as \(\tilde{\omega} = (\omega_1, \omega_2) \) smooth and both divergence–free and curl–free, and with \(\omega_1, \omega_2 \in L^2(\mathbb{D}) \) so that

\[
\tilde{v} = \tilde{\nabla} f + \tilde{\nabla}^\perp g + \tilde{\omega}
\]

where \(\tilde{\nabla}^\perp g := (-g_y, g_x) \). To find \(f \), we need to solve

\[
\Delta f = \text{div} \tilde{v} \in H^{-1}(\mathbb{D}), \quad f \in H^1_0(\mathbb{D})
\]

whereas for \(g \), we need to solve

\[
\Delta g = \text{div}^\perp \tilde{v} \in H^{-1}(\mathbb{D}), \quad g \in H^1_0(\mathbb{D})
\]

where \(\text{div}^\perp \tilde{v} = -\partial_y v_1 + \partial_x v_2 \). This can be done uniquely with \(f, g \in H^1_0 \) via the usual machinery of weak solutions for elliptic equations.
Chapter 6

The Hodge theorem and the L^2 existence theory

We shall now prove Hodge’s representation (5.6). Recall that $\Omega^1_1(M; \mathbb{R})$ is the space of real-valued 1–forms ω with measurable coefficients and such that

$$||\omega||^2 = \int_M \omega \wedge \bar{\omega} < \infty$$

Furthermore,

$$E := \{ df | d \in \Omega^0_{\text{comp}}(M; \mathbb{R}) \}, \quad \ast E := \{ \ast df | d \in \Omega^0_{\text{comp}}(M; \mathbb{R}) \}$$

where the closure is in the sense of $\Omega^1_1(M; \mathbb{R})$.

Theorem 6.1. Let $\mathfrak{h}_2(M; \mathbb{R}) := \mathfrak{h}(M; \mathbb{R}) \cap \Omega^1_1(M; \mathbb{R})$. Then

$$\Omega^1_1(M; \mathbb{R}) = E \oplus \ast E \oplus \mathfrak{h}_2(M; \mathbb{R})$$

We begin with the following observation.

Lemma 6.2. Let $\alpha \in \Omega^1_1(M; \mathbb{R})$ and smooth. Then $\alpha \in E^\perp$ iff $d^*\alpha = 0$ and $\alpha \in (\ast E)^\perp$ iff $d\alpha = 0$. In particular, $E \subset (\ast E)^\perp$ and $\ast E \subset E^\perp$.

Proof. Clearly,

$$\alpha \in E^\perp \iff \alpha \in \{ df | f \in C^\infty_{\text{comp}}(M) \}^\perp$$

Moreover,

$$0 = \langle \alpha, df \rangle = \langle \ast \alpha, \ast df \rangle = \int_M df \wedge \ast \alpha$$

$$= \int_M d(f \ast \alpha) - f d\ast \alpha = - \int_M f d\ast \alpha$$

for all $f \in C^\infty_{\text{comp}}(M)$ is the same as $d\ast \alpha = 0$. Thus, α is co-closed. The calculation for $(\ast E)^\perp$ is essentially the same and we skip it. \qed

69
This lemma implies that
\[\Omega^1_2(M; \mathbb{R}) = E \oplus *E \oplus (E^\perp \cap (*E)^\perp) \]
and our remaining task is to identify the intersection on the right. It is clear from Lemma 6.2 that
\[E^\perp \cap (*E)^\perp \supset \mathfrak{h}_2(M; \mathbb{R}) \]
It remains to show equality here. This is very remarkable in so far as the intersection thus consists of smooth 1-forms. The required (elliptic) regularity ingredient in this context is the so-called Weyl lemma, see Lemma 6.4 below. Note that the following lemma concludes the proof of Theorem 6.1.

Lemma 6.3.
\[E^\perp \cap (*E)^\perp = \mathfrak{h}_2(M; \mathbb{R}) \]

Proof. Take \(\omega \in E^\perp \cap (*E)^\perp \). Then by Lemma 6.2,
\[\langle \omega, df \rangle = \langle \omega, *df \rangle = 0, \quad \forall f \in C^\infty_{\text{comp}}(M) \]
and \(f \) complex-valued (say). With \(\omega = u \, dz + v \, d\bar{z} \) in local coordinates \((U, z), z = x + iy\) and with supported in \(U \), we conclude that
\[\langle \omega, df \rangle = 2 \int (u \overline{f_z} + v \overline{f_{\bar{z}}}) \, dxdy \]
\[\langle \omega, *df \rangle = -2i \int (u \overline{f_z} - v \overline{f_{\bar{z}}}) \, dxdy \]
This system is in turn equivalent to
\[\int \overline{u} f_z \, dxdy = 0, \quad \int \overline{v} f_{\bar{z}} \, dxdy = 0 \]
for all such \(f \). Now setting \(f = g_{\bar{z}} \) and \(f = g_z \), respectively, where \(g \) is supported in \(U \), yields
\[\int \overline{u} \Delta g \, dxdy = \int \overline{v} \Delta g \, dxdy = 0 \]
which implies by Weyl’s lemma below that \(u, v \) are harmonic and thus smooth in \(U \). In view of Lemma 6.2, \(\omega \) is both closed and co-closed and therefore harmonic. \(\square \)

Lemma 6.4. *Let \(V \subset \mathbb{C} \) be open and \(u \in L^1_{\text{loc}}(V) \). Suppose \(u \) is weakly harmonic, i.e.,
\[\int_V u \Delta \phi \, dxdy = 0 \quad \forall \phi \in C^\infty_{\text{comp}}(V) \]
Then \(u \) is harmonic, i.e., \(u \in C^\infty(V) \) and \(\Delta u = 0 \).*
Proof. As a first step, we prove this: suppose \(\{u_n\}_{n=1}^{\infty} \subset C^\infty(V) \) is a sequence of harmonic functions that converges in the sense of \(L^1_{\text{loc}} \) to \(u_\infty \). Then \(u_\infty \in C^\infty(V) \) and \(u_\infty \) is harmonic.

This follows easily from the mean-value property. Indeed, for each \(n \), and each disk \(D(z, r) \subset V \),

\[
\begin{align*}
 u_n(z) &= \frac{1}{|D(z, r)|} \int_{D(z, r)} u_n(\zeta) \, d\zeta \, d\eta \\
 \text{Hence, by the assumption of } L^1_{\text{loc}} \text{ convergence, } \\
 \{u_n\} \text{ is a Cauchy sequence in } C(V) \text{ and therefore converges uniformly on compact subsets of } V \text{ to } u_\infty \text{ which is thus continuous. Moreover, it inherits the mean value property}
\end{align*}
\]

\[
 u_\infty(z) = \frac{1}{2\pi r} \int_{|z-\zeta|=r} u_\infty(\zeta) \, d\sigma(\zeta)
\]

and is thus harmonic by Problem 31, part (x).

To conclude the proof, we let \(u \in L^1_{\text{loc}}(V) \) be weakly harmonic and define

\[
 u_n(z) := (u * \phi_n)(z) \quad \forall z \in V_1^n
\]

where \(\phi_n(\zeta) := \frac{1}{n^2} \phi(n\zeta) \) for all \(n \geq 1 \) with \(\phi \geq 0 \) a smooth bump function, \(\text{supp}(\phi) \subset \mathbb{D} \), and \(\int \phi = 1 \). Furthermore,

\[
 V_n := \{ z \in V | \text{dist}(z, \partial V) > 1/n \}
\]

Since \(u \) is weakly harmonic, \(\Delta u_n = 0 \) on \(V_n \) and \(u_n \to u \) in \(L^1_{\text{loc}}(V) \) by Lemma 3.3 (which applies to approximate identities in \(\mathbb{R}^2 \) equally well). By the previous paragraph, \(u \) is smooth and harmonic as claimed.

Let us now explain why there is always a nonzero harmonic form on a compact surface with positive genus. This goes through the standard “loop-form” construction. Thus, let \(c : [0, 1] \to M \) be a smooth, closed curve where \(M \) is an arbitrary Riemann surface. For simplicity, we shall also assume that \(c([0, 1]) \) is an imbedded one-dimensional manifold and we put the natural orientation on it, i.e., \(c(t) \) is oriented according to increasing \(t \) (such a closed curve will be called loop). Then let \(\tilde{N}_- \subset N_- \) be neighborhoods to the left of \(c \) obtained by taking the finite union of left halves (relative to \(c \)) of parametric disks centered at points of \(c \). Furthermore, the disks used in the construction of \(\tilde{N}_- \) are assumed to be compactly contained in those for \(N_- \). Then let \(f \) be a smooth function on \(N_- \) with \(f = 1 \) on \(\tilde{N}_- \), \(f = 0 \) on \(N_- \setminus \tilde{N}_- \) and \(f = 0 \) on \(M \setminus N_- \). Obviously, \(f \) is not smooth on \(M \), but the loop-form of \(c \) defined as

\[
 \eta_c := df \in \Omega^1(M; \mathbb{R})
\]

is smooth and compactly supported. Clearly, \(d\eta_c = 0 \) and the co-homology class of \(\eta_c \) is uniquely determined by the homology class of \(c \). We have the following important fact:
Lemma 6.5. Let $\alpha \in \Omega^1$ be closed. Then

$$\langle \alpha, *\eta_c \rangle = \int_c \alpha$$

Proof. Compute

$$\langle \alpha, *\eta_c \rangle = \int \alpha \wedge **\eta_c = \int_{N_-} df \wedge \alpha$$
$$= \int_{N_-} d(f\alpha) = \int_{\partial N_-} f\alpha = \int_c \alpha$$

as claimed. \(\square\)

Some important consequences of this are collected in the following corollary.

Corollary 6.6. 1) Let $\alpha \in \Omega^1(M; \mathbb{R})$. Then α is exact iff $\langle \alpha, \beta \rangle = 0$ for all co-closed $\beta \in \Omega^1(M; \mathbb{R})$ of compact support.

2) Let $\alpha \in E$ be smooth. Then α is exact, i.e., $\alpha = df$ for some real-valued $f \in C^\infty(M)$.

3) Suppose the closed loop c separates M, i.e., $M \setminus c([0,1])$ is connected. Then there exists a closed form $\alpha \in \Omega^1(M; \mathbb{R})$ which is not exact. In particular, $h_2(M; \mathbb{R}) \neq \{0\}$.

Proof. If $\alpha = df$ is exact, then clearly

$$\langle \alpha, \beta \rangle = \int_M df \wedge *\beta = -\int_M f d*\beta = 0$$

for any β as in 1). Conversely, $*\eta_c$ is co-closed and compactly supported for any loop. It follows that

$$0 = \langle \alpha, *\eta_c \rangle = \int_c \alpha$$

for any loop c. Thus α is exact as claimed.

Property 2) follows from 1) via Lemma 6.2. Finally, for 3), let c^* be a closed curve in M that crosses c transversally. This exists since $M \setminus c$ is connected. Hence,

$$\int_{c^*} \eta_c = 1$$

and η_c is closed but not exact. From Theorem 6.1,

$$\eta_c = \alpha + \omega, \quad \alpha \in E, \quad \omega \in h_2(M; \mathbb{R})$$

Since ω and η_c is smooth, so is α. By 2), α is exact so $\omega \neq 0$ as desired. \(\square\)

We shall now derive some very important consequences from Hodge’s theorem. More precisely, we answer the fundamental question of whether a general Riemann surface carries a non-constant meromorphic function. We saw that in general this cannot be done with holomorphic functions, since compact surfaces
do not allow this. However, deeper questions will still elude us here such as: which Riemann surfaces carry a meromorphic function with exactly one simple pole? In the following chapter we shall present the machinery (known as the Riemann-Roch theorem) needed for this purpose.

The basis for our entire existence theory will be the following result. It should be thought of as an answer to the following question: Let $p \in M$. Can we find a function u harmonic on $M \setminus \{p\}$ so that in some parametric disk centered at p, u has a given singularity at p like $\frac{1}{z}$ or $\log |z|$?

Or, more generally: let D be a parametric disk on a Riemann surface M centered at $p \in M$ and suppose h is a harmonic function on $D \setminus \{p\}$, differentiable on $\bar{D} \setminus \{p\}$. Can we find u harmonic on $M \setminus \{p\}$ with $u - h$ harmonic on all of D?

These questions are addressed here in the context of the Hodge theorem. As usual, M and N are arbitrary Riemann surfaces.

Theorem 6.7. Let $\bar{N} \subset M$, \bar{N} compact with smooth boundary. Fix $p_0 \in N$ and h harmonic on $N \setminus \{p_0\}$ with $h \in C^1(\bar{N})$ and $\frac{\partial h}{\partial n} = 0$ on ∂N where n is some normal vector field on ∂N that never vanishes.

Then there exists u harmonic in $M \setminus \{p_0\}$, $u - h$ harmonic on N, and $u \in \Omega^1_2(M \setminus K)$ for any compact neighborhood K of p_0. Also, u is unique up to constants.

Proof. For the existence part, take θ a C^∞ function on N which agrees with h on $N \setminus K$ where K is an arbitrary but fixed (small) compact neighborhood of p_0. Then extend θ to M simply by setting it = 0 outside of N. By Hodge, $d\theta = \alpha + \beta$, $\alpha \in E$, $\beta \in E^\perp$

If $\phi \in C^\infty_{\text{comp}}(M)$, then $\langle d\theta, d\phi \rangle = \langle \alpha, d\phi \rangle$, $\langle \alpha, *d\phi \rangle = 0$

First, suppose that supp(ϕ) $\subset M \setminus K$. Then from $\frac{\partial h}{\partial n} = 0$ and $d * dh = 0$ on N, we obtain that $\langle d\phi, d\theta \rangle = \int_N d\phi \wedge *dh = \int_{\partial N} \phi *_{\bar{L}}(*dh) = 0$

Hence, α is harmonic on $M \setminus K$. On the other hand, if supp(ϕ) $\subset N$, then $\langle d\theta - \alpha, d\phi \rangle = 0$, $\langle d\theta - \alpha, *d\phi \rangle = 0$

so that $\alpha - d\theta$ is harmonic on N. In particular, α is smooth on M and thus $\alpha = df$ with f smooth. Now set $u = f - \theta + h$

By inspection, u has all the desired properties.

Finally, if v had the same properties as u, then $u - v$ would be harmonic on M and $d(u - v) \in \Omega^1_2$. In conclusion, $d(u - v) \in E \cap h = \{0\}$, so $u - v = \text{const.}$
We remark that if h were harmonic on all of N, then $h = \text{const}$ because of the Neumann condition $\frac{\partial h}{\partial n} = 0$ on ∂N. Indeed, this is merely the fact that $\|dh\|_{L^2(N)}^2 = \int_N dh \wedge *d\bar{h} = \int_{\partial N} h i_*(*d\bar{h}) = 0$ where $i : \partial N \to M$ is the inclusion and i_* the pull-back. The main point to note here is that $i_*(dh)$ is proportional to $\partial h / \partial n = 0$.

Furthermore, we note that the exact same proof allows for several exceptional points $p_0, \ldots, p_k \in N$. The statement is as follows:

Theorem 6.8. Let $\tilde{N} \subset M$, \tilde{N} compact with smooth boundary. Fix finitely many points $\{p_j\}_{j=0}^k \in N$ and h harmonic on $N \setminus \{p_j\}_{j=0}^k$ with $h \in C^1(\tilde{N})$ and $\frac{\partial h}{\partial n} = 0$ on ∂N where n is some normal vector field on ∂N.

Then there exists u harmonic in $M \setminus \{p_j\}_{j=0}^k$, $u - h$ harmonic on N, and $u \in \Omega_2^1(M \setminus K)$ for any compact neighborhood K of $\{p_j\}_{j=0}^k$. Also, u is unique up to constants.

We can now collect a number of corollaries:

Corollary 6.9. Given $n \geq 1$ and a coordinate chart (U, z) around p_0 in M with $z(p_0) = 0$ there is a harmonic on $M \setminus \{p_0\}$ with $u - z^{-n}$ harmonic on U and $du \in \Omega_2^1(M \setminus K)$ for any compact neighborhood K of p_0.

Proof. Simply let wlog $z(U) \supset \bar{D}$ and define

$$h(z) = z^{-n} + \frac{z^n}{2} \quad \forall |z| \leq 1$$

The theorem applies with $\tilde{N} = z^{-1}(\bar{D})$ since $\frac{\partial h}{\partial n} = 0$ on $|z| = 1$.

Next, we would like to place a log $|z|$ singularity on a Riemann surface. To apply Theorem 6.7 we need to enforce the Neumann condition $\frac{\partial h}{\partial n} = 0$. This amounts to solving the Neumann problem

$$\Delta u = 0 \text{ in } |z| < 1, \quad \frac{\partial u}{\partial n} = -\frac{\partial}{\partial r} \log r = -1 \text{ on } |z| = 1$$

But this has no solution since the integral of -1 around $|z| = 1$ does not vanish (necessary by the divergence theorem). Now let us also note that with $M = \mathbb{C}$ the function $u(z) = \log |z|$ satisfies

$$du(z) = \frac{1}{2} \frac{dz}{z} + \frac{1}{2} \frac{dz}{\bar{z}}$$

which is not in L^2 around $|z| = \infty$ (it barely fails). Finally, this calculation also shows that if we could place a log $|z|$ singularity on M then this would produce a meromorphic differential $\omega = du + i \ast du$ with exactly one simple pole. If M is compact, then this violates the fact that the sum of the residues would have to vanish.

What all of this suggests is that we should try with two logarithmic singularities. This is indeed possible:
Corollary 6.10. Let \(p_0, p_1 \in M \) be distinct and suppose \(z \) and \(\zeta \) are local coordinates around \(p_0 \) and \(p_1 \), respectively. Then there exists \(u \) harmonic on \(M \setminus \{p_0, p_1\} \) with \(u - \log |z| \) and \(u + \log |\zeta| \) harmonic locally around \(p_0, p_1 \), respectively. Moreover, \(du \in \Omega^1_2(M \setminus K) \) where \(K \) is any compact neighborhood of \(\{p_0, p_1\} \).

Proof. For this one, assume first that \(p_0, p_1 \) are close together. Then let \((U, z) \) be a coordinate chart with \(z(p_0) = z_0 \in \mathbb{D} \setminus \{0\} \), \(z(p_1) = z_1 \in \mathbb{D} \setminus \{0\} \) and \(z(U) \supset \mathbb{D} \). Define

\[
h(z) = \log |(z - z_0)(z - z_1^*)| \quad (\text{where } z_0^*, z_1^* \text{ are the reflections of } z_0, z_1 \text{ across } \partial \mathbb{D} \text{ (i.e., } z_j^* = \overline{z_j})).
\]

Then check that

\[
|z_0^* - z_j^*| = |z_1^* - z_j^*| = |z\nolimits^* - z_j| = |z_0 - z_j| = |z_1 - z_j|
\]

which gives \(h(z^\bullet) = h(z) \) (why?). This in turn implies the Neumann condition \(\frac{\partial h}{\partial n} = 0 \). Hence, by Theorem 6.8, there exists \(u \) with all the desired properties. If \(p_0 \) and \(p_1 \) do not fall into one coordinate chart, then connect them by a chain of points that satisfy this for each adjacent pair. This yields finitely many functions \(u_0, u_1, u_2 \) etc. The desired function is the sum of all these. \(\square \)

To conclude our existence theory, we now state some simple but most important corollaries on meromorphic differentials.

Corollary 6.11. (a) Given \(n \geq 1 \) and \(p_0 \in M \) there exists a meromorphic differential \(\omega \) with \(\omega - \frac{dz}{z} \) holomorphic locally around \(p_0 \) (here \(z \) are local coordinates at \(p_0 \)). Moreover, \(\omega \in \Omega^1_2(M \setminus K) \) for every compact neighborhood \(K \) of \(p_0 \).

(b) Let \(p_0, p_1 \in M \). There exists \(\omega \) meromorphic on \(M \) with \(\omega - \frac{dz}{z} \) holomorphic around \(p_0 \) and \(\omega + \frac{d\zeta}{\zeta} \) holomorphic around \(p_1 \), respectively (with \(z, \zeta \) local coordinates). Moreover, \(\omega \in \Omega^1_2(M \setminus K) \) for every compact neighborhood \(K \) of \(\{p_0, p_1\} \).

Proof. With \(u \) as in Corollary 6.9 and 6.10, respectively, we set \(\alpha = du \). In the first case, \(\omega = \frac{1}{2\pi}(\alpha + i*\alpha) \), whereas in the second, \(\omega = \alpha + i*\alpha \). \(\square \)

As a reality check, take \(M = \mathbb{C} \) and \(p_0 = 0 \), say. Then for (a) we would simply obtain \(\omega = \frac{dz}{z} \). Note that the \(L^2 \) condition holds when \(n \geq 1 \) but not for \(n = 0 \). For (b), we would take \(\omega = \frac{dz}{z-p_0} - \frac{dz}{z-p_1} \). This has all the desired properties, including the \(L^2 \) condition at \(z = \infty \). Finally, we can now state and prove the following very satisfactory result.

Theorem 6.12. Let \(\{p_j\}_{j=1}^J \subset M, J \geq 2, \) and \(c_j \in \mathbb{C} \) with \(\sum_{j=1}^J c_j = 0 \). Then there exists a meromorphic differential \(\omega \), holomorphic on \(M \setminus \{p_1, p_2, \ldots, p_J\} \) so that \(\omega \) has a simple pole at each \(p_j \) with residue \(c_j \).
Proof. Pick any other point $p_0 \in M$ and let ω_j be meromorphic with simple poles at p_0, p_j and residues $-c_j, c_j$, respectively. The differential $\omega = \sum_{j=1}^{f} \omega_j$ has all the desired properties.

From here we immediately get the following remarkable corollary.

Corollary 6.13. Every Riemann surface carries a non-constant meromorphic function.

Proof. Take three points $p_0, p_1, p_2 \in M$ and let ω_1 be a meromorphic one-form with simple poles at p_0, p_1 and residues $1, -1$, respectively and holomorphic everywhere else. Similarly, let ω_2 be a meromorphic one-form with simple poles at p_1, p_2 and residues $-1, 1$, respectively and holomorphic everywhere else. Now set $f = \frac{\omega_1}{\omega_2}$ where the division is well-defined in local coordinates and defines a meromorphic function. Since $f(p_1) = 1$ and $f(p_2) = 0$, the function f is not constant.

In the following chapter we shall study the vector space (or rather, its dimension) of meromorphic functions and differentials with zeros and poles at prescribed points.
Chapter 7

The Riemann-Roch theorem

We will now turn to the following much deeper question: what kind of non-constant meromorphic functions does a given Riemann surface admit? More precisely, if \(M \) is compact and of genus \(g \), what can we say about the minimal degree of a meromorphic function on \(M \)? Answering this question will lead us to the Riemann-Roch theorem. To appreciate this circle of ideas, note the following: Suppose \(M \) is compact and admits a meromorphic function \(f \) of degree one. Then \(M \) defines an isomorphism between \(M \) and \(\mathbb{C}P^1 \). Clearly, this implies that no such function exists if \(M \) has genus one or higher! On the other hand, we will show (from Riemann-Roch) that for the simply connected compact case there is such a function. In this chapter, the reader will need to know about basic topology of compact surfaces: homology, the canonical homology basis, the fundamental polygon of a compact surface of genus \(g \).

Let \(M \) be a compact Riemann surface of genus \(g \). The intersection numbers between two closed curves \(\gamma_1, \gamma_2 \) are defined as

\[
\gamma_1 \cdot \gamma_2 = \int_M \eta_{\gamma_1} \wedge \eta_{\gamma_2} = -\langle \eta_{\gamma_1}, \ast \eta_{\gamma_2} \rangle
\]

which is always an integer. Recall that \(\eta_\gamma \) for an (oriented) loop \(\gamma \) is \(= df \) where \(f \) is a smooth function of compact support with \(f = 1 \) on a small neck to the left of \(\gamma \). The homology class of \(\gamma \) determines the cohomology class of \(\eta_\gamma \). Hence, the intersection number is well-defined as a product between homology classes in \(H_1(M; \mathbb{Z}) \). Note that

\[
b \cdot a = -a \cdot b, \quad (a + b) \cdot c = a \cdot c + b \cdot c
\]

for any classes \(a, b, c \).

Pick a (canonical) homology basis for the 1-cycles, and denote it by \(\{A_j\}_{j=1}^{2g} \). Here \(A_j = a_j \) if \(1 \leq j \leq g \) and \(A_j = b_{j-g} \) if \(g + 1 \leq j \leq 2g \) where

\[
a_j \cdot b_k = \delta_{jk}, \quad a_j \cdot b_k = 0, \quad b_j \cdot b_k = 0
\]
for each \(1 \leq j, k \leq g\). Next, we define a dual basis \(\{\beta_k\}_{k=1}^{2g}\) for the cohomology. It is simply

\[
\beta_k = \eta_{\alpha_k}, \quad 1 \leq k \leq g \\
\beta_k = -\eta_{\alpha_{k-g}}, \quad g + 1 \leq k \leq 2g
\]

and satisfies the duality relation

\[
\int_{A_j} \beta_k = \delta_{jk}.
\] \hspace{1cm} (7.1)

We also record the important fact (check it!)

\[
\left\{ \int_M \beta_j \wedge \beta_k \right\}_{j,k=1}^{2g} = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} =: J
\] \hspace{1cm} (7.2)

Let’s collect some important properties (a form \(\alpha\) is called real if \(\alpha = \bar{\alpha}\)):

Lemma 7.1. The real one-forms \(\{\beta_j\}_{j=1}^{2g}\) are a basis of \(H^1(M; \mathbb{R})\) (de-Rham space of one forms). Let \(\alpha_j\) denote the orthogonal projection of \(\beta_j\) onto the harmonic forms (from the Hodge theorem). Then \(\alpha_j\) is a real one-form, and \(\{\alpha_j\}_{j=1}^{2g}\) is a basis of both \(\mathfrak{h}(M; \mathbb{R})\) and \(\mathfrak{h}(M; \mathbb{C})\), the real and complex-valued harmonic forms, respectively. In particular,

\[
\dim_{\mathbb{R}} \mathfrak{h}(M; \mathbb{R}) = \dim_{\mathbb{C}} \mathfrak{h}(M; \mathbb{C}) = 2g
\]

The relation (7.2) holds also for \(\int_M \alpha_j \wedge \alpha_k\).

Proof. Since \(\{A_j\}\) is a basis of \(H_1(M; \mathbb{Z})\), a closed form \(\alpha\) is exact iff

\[
\int_{A_j} \alpha = 0 \quad \forall \ 1 \leq j \leq 2g
\]

Hence the linear map \(H^1(M; \mathbb{R}) \rightarrow \mathbb{R}^{2g}\)

\[
\alpha \mapsto \left\{ \int_{A_j} \alpha \right\}_{j=1}^{2g}
\]

is injective. Because of (7.1) this map is also onto and is thus an isomorphism. It is called the *period map*. The exact same argument also works over \(\mathbb{C}\). Since every cohomology class has a unique harmonic representative, we obtain the statements about \(\mathfrak{h}\). To check that \(\alpha_j\) is real, write

\[
\beta_j = df_j + \alpha_j \\
\overline{\beta_j} = \beta_j = df_j + \overline{\alpha_j}
\]

so that

\[-\alpha_j + \overline{\alpha_j} = d(f_j - \overline{f_j})
\]

is both harmonic and exact, and thus zero. \(\square\)
Next, we find a basis for the holomorphic one-forms $\mathcal{H} \Omega^1$ (in the classical literature, these are called abelian differentials of the first kind).

Lemma 7.2. With α_j as above, define the holomorphic differential $\omega_j = \alpha_j + i^* \alpha_j$. Then $\{\omega_j\}_{j=1}^g$ is a basis in $\mathcal{H} \Omega^1$. In particular, $\dim \mathbb{C} \mathcal{H} \Omega^1 = g$.

Proof. The dimension statement is immediate from

$$\mathfrak{h}(M; \mathbb{C}) = \mathcal{H} \Omega^1 \oplus \overline{\mathcal{H} \Omega^1}$$

To see the statement about the basis, we express $*$ as a matrix relative to the basis $\{\alpha_j\}_{j=1}^g$. This is possible, since $*$ preserves the harmonic forms. Also, note that it preserves real forms. Hence, with $\lambda_{jk} \in \mathbb{R}$,

$$* \alpha_j = \sum_{k=1}^{2g} \lambda_{jk} \alpha_k, \quad *\mathcal{A} = \mathcal{G} \mathcal{A}, \quad \mathcal{G} = \begin{bmatrix} \Lambda_1 & \Lambda_2 \\ \Lambda_3 & \Lambda_4 \end{bmatrix} \in GL(2d, \mathbb{R})$$

where \mathcal{A} is the column vector with entries $\alpha_1, \ldots, \alpha_{2g}$. From $** = -\text{Id}$ we deduce $\mathcal{G}^2 = -I_{2d}$. We expect Λ_2, Λ_3 to be invertible since heuristically $*$ should correspond to a switch between the a_j and the b_k curves. Indeed, we have

$$\langle \alpha_j, \alpha_\ell \rangle = \langle * \alpha_j, * \alpha_\ell \rangle = \sum_{k=1}^{2g} \lambda_{jk} \langle \alpha_k, * \alpha_\ell \rangle = \sum_{k=1}^{2g} \lambda_{jk} \int_M \alpha_\ell \wedge \alpha_k$$

or, in matrix notation,

$$\Gamma = \mathcal{G} J^t = \begin{bmatrix} \Lambda_2 & -\Lambda_1 \\ \Lambda_4 & -\Lambda_3 \end{bmatrix}$$

where $\Gamma = \{\langle \alpha_j, \alpha_\ell \rangle\}_{j,\ell=1}^{2g}$ is a positive definite matrix (since it is the matrix of a positive definite scalar product) and J is as above, see (7.2). Hence $\Lambda_2 > 0$ and $-\Lambda_3 > 0$; in particular, these matrices are invertible.

Suppose there were a linear relation

$$c_1 \omega_1 + \ldots + c_g \omega_g = (v^t + i w^t) \cdot (\mathcal{A}_1 + i \cdot \mathcal{A}_1) = 0$$

where $v, w \in \mathbb{R}^g$ are column vectors, and $\mathcal{A} = (\mathcal{A}_1^t)$. By the preceding paragraph, $*\mathcal{A}_1 = \Lambda_1 \mathcal{A}_1 + \Lambda_2 \mathcal{A}_2$ so that

$$[v^t \cdot \mathcal{A}_1 - w^t \cdot (\Lambda_1 \mathcal{A}_1 + \Lambda_2 \mathcal{A}_2)] + i [w^t \cdot \mathcal{A}_1 + v^t \cdot (\Lambda_1 \mathcal{A}_1 + \Lambda_2 \mathcal{A}_2)] = 0$$

Since the terms in brackets are real one-forms, it follows that they both vanish. Therefore, we obtain the following relation between the linearly independent vectors $\mathcal{A}_1, \mathcal{A}_2$ of one-forms.

$$(v - \Lambda_1^t w) \cdot \mathcal{A}_1 = (\Lambda_2^t w) \cdot \mathcal{A}_2, \quad (\Lambda_1^t v + w) \cdot \mathcal{A}_1 = -(\Lambda_2^t v) \cdot \mathcal{A}_2$$

which finally yields $\Lambda_2 w = \Lambda_2 v = 0$, and thus $v = w = 0$ as desired. \qed
To proceed, we need the following remarkable identity:

Lemma 7.3. Let \(\theta, \tilde{\theta} \) be closed one-forms. Then
\[
\int_M \theta \wedge \tilde{\theta} = \sum_{j=1}^{g} \left(\int_{a_j} \theta \int_{b_j} \tilde{\theta} - \int_{b_j} \theta \int_{a_j} \tilde{\theta} \right) \tag{7.3}
\]
In particular, if \(\theta \) is harmonic, then
\[
||\theta||^2 = \sum_{j=1}^{g} \left(\int_{a_j} \theta \int_{b_j} \ast \tilde{\theta} - \int_{b_j} \theta \int_{a_j} \ast \tilde{\theta} \right)
\]

Proof. The integral on the left-hand side of (7.3) only depends on the cohomology classes of \(\theta \) and \(\tilde{\theta} \), respectively. Thus, we can write modulo exact forms
\[
\theta = \sum_{j=1}^{2g} \mu_j \alpha_j, \quad \tilde{\theta} = \sum_{j=1}^{2g} \tilde{\mu}_j \alpha_j
\]
where \(\mu_j = \int_{A_j} \theta \), \(\tilde{\mu}_j = \int_{A_j} \tilde{\theta} \). It follows that
\[
\int_M \theta \wedge \tilde{\theta} = \sum_{j,k=1}^{2g} \mu_j \tilde{\mu}_k \int_M \alpha_j \wedge \alpha_k = \sum_{j=1}^{g} \left(\mu_j \tilde{\mu}_{j+g} - \mu_{j+g} \tilde{\mu}_j \right)
\]
by (7.2).

We now state two important corollaries:

Corollary 7.4. Suppose \(\theta \in \mathcal{H}\Omega^1 \). Assume that either
- all a–periods vanish, i.e., \(\int_{a_j} \theta = 0 \) for all \(1 \leq j \leq g \)
- or all periods of \(\theta \) are real
Then \(\theta = 0 \).

Proof. From the previous lemma, since \(\ast \theta = -i\theta \),
\[
||\theta||^2 = \int_M \theta \wedge \ast \tilde{\theta} = i \int_M \theta \wedge \tilde{\theta} = i \sum_{j=1}^{g} \left(\int_{a_j} \theta \int_{b_j} \tilde{\theta} - \int_{b_j} \theta \int_{a_j} \tilde{\theta} \right)
\]
which vanishes under either of our assumptions.

Corollary 7.5. The map
\[
\begin{align*}
\mathcal{H} \Omega^1 \to \mathbb{C}^g \\
\omega \mapsto \left(\int_{a_1} \omega, \ldots, \int_{a_g} \omega \right)
\end{align*}
\]
is a linear isomorphism. In particular, there exists a unique basis \(\{ \zeta_j \}_{j=1}^g \) of \(\mathcal{H} \Omega^1 \) for which \(\int_{a_j} \zeta_k = \delta_{jk} \).
Proof. This is an immediate consequence of the previous corollary and the fact that \(\dim \mathcal{H} = g \).

This result immediately raises the question what the other periods \(\Pi_{jk} := \int_{b_j} \zeta_k \) look like. Before proceeding, consider the simplest example\(^1\) with \(g = 1 \), i.e., \(M = \mathbb{C}/(1, \tau) \) where \((1, \tau)\) is the group generated by the translations \(z \mapsto z + 1 \), \(z \mapsto z + \tau \) with \(\text{Im} \tau > 0 \). It is clear that in this case the basis of the previous corollary reduces to \(\zeta = dz \) with \(a\)-period 1, and \(b\)-period \(\tau \). Here we chose the \(a\)-loop to be the edge given by \(z \mapsto z + 1 \), and the \(b\)-loop as the edge \(z \mapsto z + \tau \).

Returning to the general case, given a basis \(\{ \theta_j \}_{j=1}^g \) of \(H_1(\Omega) \), we call the \(g \times 2g \) matrix whose \(j\)th row consists of the periods of \(\theta_j \), the period matrix of the basis.

Lemma 7.6. Riemann’s bilinear relations: The period matrix of the basis \(\{ \zeta_j \}_{j=1}^g \) from above has the form

\[
(I, \Pi), \quad I = \text{Id}_{g \times g}, \quad \Pi' = \Pi, \quad \text{Im} \Pi > 0
\]

Proof. If \(\theta, \tilde{\theta} \) are holomorphic, then \(\theta \wedge \tilde{\theta} = 0 \). Hence,

\[
0 = \sum_{j=1}^g \left(\int_{a_j} \theta \int_{b_j} \tilde{\theta} - \int_{b_j} \theta \int_{a_j} \tilde{\theta} \right)
\]

In particular, setting \(\theta = \zeta_k, \tilde{\theta} = \zeta_\ell \),

\[
0 = \sum_{j=1}^g \left(\int_{a_j} \zeta_k \int_{b_j} \zeta_\ell - \int_{b_j} \zeta_\ell \int_{a_j} \zeta_k \right) = \Pi_{k\ell} - \Pi_{\ell k}
\]

Next, we have

\[
\langle \zeta_k, \zeta_j \rangle = \int_M \zeta_k \wedge \overline{\zeta_j} = i \int_M \zeta_k \wedge \overline{\zeta_j} = \sum_{\ell=1}^g \left(\int_{a_\ell} \zeta_k \int_{b_\ell} \overline{\zeta_j} - \int_{b_\ell} \zeta_k \int_{a_\ell} \overline{\zeta_j} \right) = 2 \text{Im} \Pi_{k\ell}
\]

which implies that \(\text{Im} \Pi > 0 \).

In the case of the torus from the previous example, \(\Pi = \tau \) and \(\text{Im} \Pi = \text{Im} \tau > 0 \) by construction. The name ”bilinear relation” in Riemann surface theory refers to any relation that originates by applying Lemma 7.3 to a specific choice of \(\theta, \tilde{\theta} \). Let us re-prove this lemma in a somewhat more intuitive fashion via Stokes theorem.

\(^1\)It is a theorem that every torus \(\mathbb{C}/(z \mapsto z + \omega_1, z \mapsto z + \omega_2) \) is conformally equivalent to such a torus with a unique \(\tau \). Hence the moduli space of tori is the upper half plane. This theorem is within your reach and you can try to prove it.
CHAPTER 7. THE RIEMANN-ROCH THEOREM

Second proof of Lemma 7.3. We use the fundamental polygon of the Riemann surface M, which is the polygon \mathcal{F} bounded by the curves $a_1, b_1, a_1^{-1}, b_1^{-1}, a_2, \ldots$ and with appropriate identifications on the boundary. Since \mathcal{F} is simply connected, $\theta = df$ on \mathcal{F}. With some $z_0 \in \mathcal{F}$,

$$f(z) = \int_{z_0}^{z} \theta$$

Note that f does not necessarily agree at identified points. By Stokes,

$$\int_{\mathcal{M}} \theta \wedge \bar{\theta} = \int_{\mathcal{F}} df \wedge \bar{\theta} = \int_{\partial \mathcal{F}} f \bar{\theta}$$

$$= \sum_{j=1}^{g} \left(\int_{a_j} f \bar{\theta} + \int_{b_j} f \bar{\theta} + \int_{a_j^{-1}} f \bar{\theta} + \int_{b_j^{-1}} f \bar{\theta} \right) \tag{7.4}$$

To proceed, let $z, z' \in \partial \mathcal{F}$ be identified points on a_j, a_j^{-1}, respectively. Then

$$\int_{a_j} f \bar{\theta} + \int_{a_j^{-1}} f \bar{\theta} = \int_{a_j} \left(\int_{z_0}^{z} \theta - \int_{z_0}^{z'} \theta \right) \bar{\theta}$$

$$= - \int_{a_j} \left(\int_{b_j} \bar{\theta} \right) \bar{\theta} = - \int_{a_j} \bar{\theta} \int_{b_j} \theta$$

A similar formula holds for the b_j, b_j^{-1} integrals. Plugging this into (7.4) yields (7.3).

The importance of this method of proof lies with the fact that it applies to the case when $\bar{\theta}$ is a meromorphic differential as well. In that case we also pick up residues when applying Stokes theorem. Here’s an important example, which uses our L^2 existence theory (more precisely, part (a) of Corollary 5 from the L^2 notes). In what follows, it will be understood automatically that the a, b–loops representing a homology basis do not pass through any pole of a meromorphic form. In particular, we regard them as fixed loops now rather than as homology classes.

Lemma 7.7. Fix some $p \in M$ and let $n \geq 2$. Denote by $\tau_p^{(n)}$ the unique meromorphic differential, holomorphic on $M \setminus \{p\}$, with singularity $\frac{dz}{z^n}$ locally at p, and with vanishing a-periods. Then

$$\int_{b_\ell} \tau_p^{(n)} = \frac{2\pi i}{n-1} \alpha_{\ell,n-2} \quad \forall \ 1 \leq \ell \leq g \tag{7.5}$$

where $\alpha_{\ell,k}$ denotes the Taylor coefficients of ζ_ℓ locally at p, i.e.,

$$\zeta_\ell(z) = \left(\sum_{k=0}^{\infty} \alpha_{\ell,k} z^k \right) dz$$

in the same local coordinates at p in which $\tau_p^{(n)}$ has singularity $\frac{dz}{z^n}$.
Proof. To start, note that \(\tau_p^{(n)} = \omega + \theta \) where \(\omega \) is from the aforementioned Corollary 5 and \(\theta \) is holomorphic and chosen in such a way that the \(a \)-periods of \(\tau_p^{(n)} \) vanish. To prove (7.5), pick a small positively oriented loop \(\gamma \) around \(p \) and let \(\mathcal{F}' \) denote the fundamental polygon \(\mathcal{F} \) with the disk bounded by \(\gamma \) deleted. Let \(\zeta_\ell \equiv df_\ell \) on \(\mathcal{F} \) and thus also on \(\mathcal{F}' \). Then, by the second proof of Lemma 7.3 presented above,

\[
0 = \int_{\mathcal{F}'} \zeta_\ell \wedge \tau_p^{(n)} = \sum_{j=1}^g \left(\int_{a_j} \zeta_\ell \int_{b_j} \tau_p^{(n)} - \int_{b_j} \zeta_\ell \int_{a_j} \tau_p^{(n)} \right) - \int_\gamma f_\ell \tau_p^{(n)} \tag{7.6}
\]

The vanishing of the left-hand side is the fact that \(\theta \wedge \bar{\theta} = 0 \) for holomorphic one-forms. In local coordinates,

\[
\int_\gamma f_\ell \tau_p^{(n)} = \int_{|z|=\epsilon} \left(\sum_{k=0}^\infty \frac{\alpha_{\ell,k}}{k+1} z^{k+1} \right) \frac{dz}{z^{n-1}} = \frac{2\pi i}{n-1} \alpha_{\ell,n-2}
\]

whereas

\[
\sum_{j=1}^g \left(\int_{a_j} \zeta_\ell \int_{b_j} \tau_p^{(n)} - \int_{b_j} \zeta_\ell \int_{a_j} \tau_p^{(n)} \right) = \int_{b_\ell} \tau_p^{(n)}
\]

In view of (7.6) we are done. \(\square \)

This lemma is needed in the proof of the Riemann-Roch theorem to which we now turn. The following terminology is standard in the field:

Definition 7.8. A divisor \(D \) on \(M \) is a finite formal sum \(D = \sum_{\nu} s_\nu p_\nu \) where \(p_\nu \in M \) are distinct and \(s_\nu \in \mathbb{Z} \). The degree of \(D \) is the integer

\[
\deg(D) = \sum_{\nu} s_\nu
\]

If \(s_\nu \geq 0 \) for all \(\nu \) then \(D \) is called integral. We write \(D \geq D' \) for two divisors iff \(D - D' = \sum_{\nu} s_\nu p_\nu \) is integral. If \(f \) is a non-constant meromorphic function on \(M \), then we define the divisor of \(f \) as

\[
(f) = \sum_{\nu} \text{ord}(f; p_\nu) p_\nu
\]

where the sum runs over the zeros and poles of \(f \) with \(\text{ord}(f; p_\nu) > 0 \) being the order at a zero \(p_\nu \) of \(f \) and \(\text{ord}(f; p_\nu) < 0 \) the order at a pole \(p_\nu \) of \(f \). In the same way, we define the divisor of a non-zero meromorphic differential:

\[
(\omega) = \sum_{\nu} \text{ord}(\omega; p_\nu) p_\nu
\]

Given a divisor \(D \), we define the \(\mathbb{C} \)-linear space

\[
L(D) = \{ f \in \mathcal{M}(M) \mid (f) \geq D \text{ or } f = 0 \}
\]
where \(\mathcal{M}(M) \) are the meromorphic functions. Analogously, we define the space
\[
\Omega(D) = \{ \omega \in \mathcal{M}\Omega^1(M) \mid (\omega) \geq D \text{ or } \omega = 0 \}
\]
where \(\mathcal{M}\Omega^1(M) \) are the meromorphic differentials.

We collect some simple observations about these notions (all dimensions here are over \(\mathbb{C} \)):

Lemma 7.9. In what follows, \(\text{Div}(M) \) denotes the additive free group of divisors on \(M \), a compact Riemann surface of genus \(g \).

1. \(\text{deg} : \text{Div}(M) \to \mathbb{Z} \) is a group homomorphism.
2. The map \(f \mapsto (f) \) is a homomorphism from the multiplicative group \(\mathcal{M}(M)^\ast \) of the field \(\mathcal{M}(M) \) (which excludes \(f \equiv \infty \)) of meromorphic functions to \(\text{Div}(M) \). The image under this map is called the subgroup of principal divisors and the quotient \(\text{Div}(M)/\mathcal{M}(M)^\ast \) is called divisor class group and the conjugacy classes are called divisor classes. The homomorphism \(\text{deg} \) factors through to the divisor class group.
3. The divisors of non-zero meromorphic differentials always belong to the same divisor class (called the canonical class \(K \)).
4. If \(D \geq D' \), then \(L(D) \subset L(D') \).
5. \(L(0) = \mathbb{C} \) and \(L(D) = \{0\} \) if \(D > 0 \).
6. If \(\text{deg}(D) > 0 \), then \(L(D) = \{0\} \).
7. \(\dim L(D) \) and \(\dim \Omega(D) \) only depend on the divisor class of \(D \). Moreover, \(\dim \Omega(D) = \dim L(D - K) \) where \(K \) is the canonical class.
8. \(\Omega(0) = \mathcal{H}\Omega^1 \simeq \mathbb{C}^g \)

Proof. 1) is obvious. For 2), note that \((fg) = (f) + (g)\) and \(\text{deg}(f) = 0 \) for any \(f, g \in \mathcal{M}(M)^\ast \). For 3), observe that for any non-zero \(\omega_1, \omega_2 \in \mathcal{M}\Omega^1 \) the quotient \(f = \frac{\omega_1}{\omega_2} \) is a non-zero meromorphic function. Since \((\omega_1) - (\omega_2) = (f) \), the statement follows. 4) is clear. For 5), note that \(f \in L(D) \) with \(D \geq 0 \) implies that \(f \) is holomorphic and thus constant. For 6), observe that \((f) \geq D \) implies that \(0 = \text{deg}((f)) \geq \text{deg}(D) \). For 7), suppose that \(D = D' + (f) \) where \(h \) is non-constant meromorphic. Then \(f \mapsto fh \) takes \(L(D') \) \(\mathbb{C} \)-linearly isomorphically onto \(L(D) \). In particular, \(\dim L(D) = \dim L(D') \). The map \(\eta \mapsto \frac{\eta}{h} \) takes \(\Omega(D) \) isomorphically onto \(L(D - K) \) where \(K = (\omega) \) is the canonical class, whence the dimension statement. Finally,
\[
\dim \Omega(D) = \dim L(D - K) = \dim L(D' - K) = \dim \Omega(D')
\]
For 8), simply note that \(\Omega(0) \) consists of all holomorphic differentials.

We now state the main result of this chapter for integral divisors.
Theorem 7.10 (Riemann-Roch). Let D be an integral divisor. Then
\[
\dim L(-D) = \deg(D) - g + 1 + \dim \Omega(D) \\
= \deg(D) - g + 1 + \dim L(D - K) \tag{7.7}
\]

Proof. By Lemma 7.9, (7.7) holds for $D = 0$. Hence, we can assume that $\deg(D) > 0$. Thus, assume that $D = \sum_{\nu=1}^{n} s_{\nu}p_{\nu}$ with $s_{\nu} > 0$. To expose the ideas with a minimum of technicalities, we let $s_{\nu} = 1$ with p_{ν} distinct for all $1 \leq \nu \leq n$. Let us also first assume that $g \geq 1$.

If $f \geq -D$, then $df \in \mathcal{M}\Omega^{1}$ is holomorphic on $M \setminus \bigcup_{\nu} \{p_{\nu}\}$ with ord$(df, p_{\nu}) \geq -2$; clearly, df has zero periods and residues. Conversely, if $\eta \in \mathcal{M}\Omega^{1}$ has all these properties, then

\[
f(q) = \int_{p}^{q} \eta
\]
is well-defined where $p \in M$ is fixed and the integration is along an arbitrary curve avoiding the p_{ν}. It satisfies $df = \eta$ and $(f) \geq -D$. Hence,

\[
\dim L(-D) = \dim V + 1
\]

\[
V := \{ \omega \in \mathcal{M}\Omega^{1} | \omega \text{ has vanishing periods and residues,} \omega \text{ is holomorphic on } M \setminus \bigcup_{\nu} \{p_{\nu}\}, \text{ and ord}(\omega, p_{\nu}) \geq -2 \}
\]

To compute $\dim V$, we define for any $t := (t_{1}, \ldots, t_{n})$

\[
\beta_{z} := \sum_{n=1}^{n} t_{\nu} \tau^{(2)}_{p_{\nu}}
\]

where $\tau^{(2)}_{p}$ is as in Lemma 7.7. By construction, β_{z} has vanishing a-periods. Second, we define the map Φ as

\[
\beta_{z} \mapsto \left\{ \int_{b_{t}} \beta_{z} \right\}_{t=1}^{g}
\]

Clearly, every $\omega \in V$ satisfies $\omega = \beta_{z}$ for some unique t and $V = \ker \Phi$ under this identification. With $\{\zeta_{t}\}_{t=1}^{g}$ the basis from above,

\[
\int_{b_{t}} \beta_{z} = 2\pi i \sum_{\nu=1}^{n} t_{\nu} \alpha_{t,0}(p_{\nu})
\]

see (7.5), where

\[
\zeta_{t}(z) = \left[\sum_{j=0}^{\infty} \alpha_{t,j}(p_{\nu}) z^{j} \right] dz
\]

locally around p_{ν}. Thus, Φ is defined by the matrix

\[
2\pi i \begin{bmatrix}
\alpha_{1,0}(p_{1}) & \ldots & \alpha_{1,0}(p_{n}) \\
\ldots & \ldots & \ldots \\
\alpha_{g,0}(p_{1}) & \ldots & \alpha_{g,0}(p_{n})
\end{bmatrix}
\]
The number of linear relations between the rows of this matrix equals
\[
\dim \{ \omega \in \Omega^1 \mid \omega(p_\nu) = 0 \quad \forall \ 1 \leq \nu \leq n \}
\]
which in turn equals \(\dim L(D - K) \). For the latter equality, fix any non-zero \(\omega \in M^1 \). Then \(f \in L(D - K) \) iff
\[
(f) \geq D - (\omega) \iff (f\omega) \geq D
\]
iff \(\alpha = f\omega \in \Omega^1(M) \) with \(\alpha(p_\nu) = 0 \) for all \(\nu \).

In summary,
\[
\dim L(-D) = \dim V + 1 = \dim \ker \Phi + 1
= n - \text{rank} \Phi + 1 = n - (g - \dim L(D - K)) + 1
= \deg(D) - g + 1 + \dim L(D - K)
\]
as claimed. Finally, if \(g = 0 \) then periods do not arise and for integral \(D \) with \(\deg(D) > 0 \) one simply has \(\dim V = n = \deg(D) \) and \(\dim L(D - K) = 0 \) so that \(\dim L(-D) = n + 1 = \deg(D) + 1 \) as desired.

The case of integral \(D \) which is not the sum of distinct points, the proof is only notationally more complicated. We again consider the case \(g \geq 1 \) first. Then, with \(D = \sum_\nu s_\nu p_\nu \) and \(n = \deg(D) \), consider
\[
\beta_\ell := \sum_\nu \sum_{k=2}^{s_\nu+1} t_{\nu,k} \tau^{(k)}_{p_\nu}, \quad \ell = \{t_{\nu,k}\}_{2 \leq k \leq s_\nu+1}
\]
Every \(\omega \) in the linear space
\[
V := \left\{ \omega \in M^1 \mid \omega \text{ has vanishing periods and residues, } \omega \text{ is holomorphic on } M \setminus \bigcup_\nu \{p_\nu\}, \text{ and } \text{ord}(\omega, p_\nu) \geq -s_\nu - 1 \right\}
\]
satisfies \(\omega = \beta_\ell \) for some \(\ell \in \mathbb{C}^n \). As before, we have \(\dim L(-D) = \dim V + 1 \).

With \(\Phi \) as above, \(\beta_\ell \in V \) iff \(\Phi(\beta_\ell) = 0 \) so that \(\dim V = \dim \ker \Phi \). From Lemma 7.7 we compute the \(b \)-periods as
\[
\int_{b_\ell} \beta_\ell = 2\pi i \sum_\nu \sum_{2 \leq k \leq s_\nu+1} t_{\nu,k} \frac{\alpha_{\ell,k-2}(p_\nu)}{k-1}
\]
For the purposes of computing dimensions, we may evidently replace \(t_{\nu,k} \) with \(\frac{t_{\nu,k}}{k-1} \). By the same argument as in the case \(s_\nu = 1 \) one now concludes that
\[
\dim \ker \Phi = n - (g - \dim(D - K))
\]
and (7.7) follows. Finally, the changes for \(g = 0 \) are obvious and we skip them. \(\square \)
As an immediate corollary, we obtain the following remarkable result.

Corollary 7.11. Let M be compact and simply connected. Then $M \simeq \mathbb{C}P^1$ in the sense of conformal isomorphism.

Proof. Let $D = p_0$ where $p_0 \in M$ is arbitrary. Since $g = 0$, Theorem 7.10 implies that

$$\dim L(-D) \geq 2$$

Thus, there exists a non-constant $f \in M(M)$ with a simple pole at p_0 and no other poles. Hence $\deg(f) = 1$ and f is an isomorphism between M and $\mathbb{C}P^1$. \qed

The generalization of this proof method to higher genus yields the following:

Corollary 7.12. Let M be compact with genus $g \geq 1$. Then M can be represented as a branched cover of $\mathbb{C}P^1$ with at most $g + 1$ sheets.

Proof. Take $D = (g + 1)p_0$. Then $\dim L(-D) \geq 2$ by Riemann-Roch. Hence, there exists $f : M \to \mathbb{C}P^1$ meromorphic, f holomorphic on $M \setminus \{p_0\}$ with $\text{ord}(f, p_0) \geq -g - 1$. Clearly, such an f defines the branched covering. \qed

Let us give one last illustration of this proof method; to motivate the result, recall that on a simply connected surface M any holomorphic differential vanishes identically. If $g \geq 1$, we now observe completely different behavior: there is no point $p_0 \in M$ at which all holomorphic differentials vanish.

Corollary 7.13. Let M be compact with $g \geq 1$. Then there is no point in M at which all $\omega \in \mathcal{H}\Omega^1$ vanish.

Proof. Suppose $p_0 \in M$ were such a point and set $D = p_0$. Then

$$\mathcal{H}\Omega^1(M) = L(-K) = L(D - K)$$

By Riemann-Roch therefore

$$\dim L(-D) = 1 - p + 1 + \dim L(-K) = 2 - p + p = 2$$

As in the proof of Corollary 7.11 we could now conclude that M is conformally equivalent to $\mathbb{C}P^1$, which cannot be. For example, it contradicts the Riemann-Hurwitz formula. \qed

The Riemann-Roch theorem also holds for arbitrary divisors. One ingredient in the proof is the following nice fact.

Lemma 7.14. The degree of the canonical class is given by

$$\deg(K) = 2g - 2 = \chi(M)$$
CHAPTER 7. THE RIEMANN-ROCH THEOREM

Proof. If \(g = 0 \), then take \(M = \mathbb{C}_\infty \) and \(\omega = dz \) in the chart \(z \in \mathbb{C} \). Under the change of variables \(z \mapsto -\frac{1}{z} \), this transforms into \(\omega = -\frac{dz}{z^2} \). Hence, \(\deg(K) = -2 \).

If \(g \geq 1 \), pick any \(\omega \in \mathcal{H}\Omega^1(M) \) which has dimension \(2g \). Then \((\omega)\) is integral and by Theorem 7.10,

\[
\dim L(-K) = \deg(K) - g + 1 + \dim L(0) = \deg(K) - g + 2
\]

whereas \(f \in L(-K) = \mathcal{H}\Omega^1(M) \). Hence \(\dim L(-K) = \dim \mathcal{H}\Omega^1(M) = g \).

An alternative proof based on the Riemann-Hurwitz formula is as follows: By Theorem 7.10 there exists a meromorphic function \(f \) with \(n \) simple poles as long as \(n \geq g + 1 \). In particular, \(\deg(f) = n \). Take \(\omega = df \). Suppose that \(p \in M \) is a branch point of \(f \). Then \(p \) is not a pole of \(f \) and

\[
\ord(\omega; p) = b_f(p)
\]

where \(b_f(p) \) is the branch number of \(f \) at \(p \). If \(p \) is a pole of \(f \), then \(\ord(\omega; p) = -2 \) so that

\[
\deg((\omega)) = -2n + \sum_{p \in M} b_f(p)
\]

By the Riemann-Hurwitz formula,

\[
2(g - 1) = -2n + \sum_{p \in M} b_f(p)
\]

and we are done. \(\square \)

Combining this with Theorem 7.10 now yields the full Riemann-Roch theorem.

Theorem 7.15. Equation (7.7) holds for all divisors \(D \).

Proof. Suppose \(D \) is such that \(D - K \) is equivalent to an integral divisor. Then, from Theorem 7.10,

\[
\dim L(K-D) = \deg(K-D) - g + 1 + \dim L(D) = -\deg(D) + g - 1 + \dim L(D)
\]

which is the desired statement. Suppose therefore that neither \(D \) nor \(K-D \) are equivalent to an integral divisor. Then

\[
\dim L(-D) = \dim L(D-K) = 0
\]

It remains to be shown that \(\deg(D) = g - 1 \). For this we write \(D = D_1 - D_2 \) where \(D_1 \) and \(D_2 \) are integral and have no point in common. Clearly, \(\deg(D) = \deg(D_1) - \deg(D_2) \) with both degrees on the right-hand side positive. By Theorem 7.10,

\[
\dim L(-D_1) \geq \deg(D_1) - g + 1 = \deg(D) + \deg(D_2) - g + 1
\]

If \(\deg(D) \geq g \), then \(\dim L(-D_1) \geq \deg(D_2) + 1 \) and there exists a function \(f \in L(-D_1) \) which vanishes at all points of \(D_2 \) to the order prescribed by \(D_2 \).
Indeed, this vanishing condition imposes $\deg(D_2)$ linear conditions which leaves us with one dimension in $L(-D_1)$. For this f,

$$(f) + D \geq -D_1 + D_2 + D = 0$$

so that $f \in L(-D)$ contrary to our assumption. This shows that $\deg(D) \leq g - 1$. Similarly,

$$\deg(K - D) = 2g - 2 - \deg(D) \leq g - 1 \implies \deg(D) \geq g - 1$$

and we are done. □
Chapter 8

Green functions and the Dirichlet problem

In the notes on Hodge theory we encountered the fundamental problem of solving the so called Poisson equation

$$\Delta u = f$$ \hspace{1cm} (8.1)

when $f \in C^2_{\text{comp}}(\mathbb{R}^2)$. Clearly, u is not unique (add any linear function). However, we singled out the solution

$$u(z) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \log |z - \zeta| f(\zeta) \, d\xi d\eta$$ \hspace{1cm} (8.2)

where $\zeta = \xi + i\eta$. The reader will easily verify that it is the unique solution of (8.1) with the property that $u(z) = k \log |z| + o(1)$ as $|z| \to \infty$ for some constant k. In fact, necessarily $k = \langle f \rangle$.

The function $\Gamma(z, \zeta) = \frac{1}{2\pi} \log |z - \zeta|$ is of great importance. It is called the fundamental solution of Δ which means that $\Delta G(\cdot, \zeta) = \delta_\zeta$ in the sense of distributions. We are now led to ask how to solve (8.1) on a bounded domain $\Omega \subset \mathbb{C}$ (for example on $\Omega = \mathbb{D}$). To obtain uniqueness – from the maximum principle – we impose a Dirichlet boundary condition

$$u = 0 \quad \text{on} \quad \partial \Omega$$

with $f \in C(\Omega)$ we mean a function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ which satisfies (8.3) in the pointwise sense. To solve (8.3), we try to emulate (8.2).

Definition 8.1. We say that $\Omega \subset \mathbb{C}$ admits a Green function if there exists G with the following properties:

- $G(\cdot, \cdot) \in C(\overline{\Omega} \times \Omega \setminus \{z = \zeta\})$

- The function $h(z, \zeta) := G(z, \zeta) - \Gamma(z, \zeta)$ is harmonic on Ω in the first variable for all $\zeta \in \Omega$, and jointly continuous on $\Omega \times \Omega$

91
CHAPTER 8. GREEN AND DIRICHLET

- $G(z, \zeta) = 0$ for all $(z, \zeta) \in \partial \Omega \times \Omega$

It is important to note that this definition applies to unbounded $\Omega \subset \mathbb{C}$, but in that case we view $\Omega \subset \mathbb{C}_\infty$, so that $\infty \in \partial \Omega$. In particular, we require vanishing at infinity in that case. It is clear that if G exists, then it is unique. Also, $G < 0$ in Ω by the maximum principle.

Lemma 8.2. If Ω admits a Green function, then (8.3) has a unique solution for every $f \in C_{\text{comp}}(\Omega)$ given by

$$u(z) = \int_{\Omega} G(z, \zeta)f(\zeta) \, d\zeta \quad \forall \, z \in \Omega$$

Proof. Uniqueness follows from the maximum principle. By the continuity assumptions on G, u is continuous on $\overline{\Omega}$ and satisfies $u = 0$ on $\partial \Omega$. Moreover, with $\zeta = \xi + i\eta$, we can write

$$u(z) = \int_{\Omega} \left[G(z, \zeta) - \Gamma(z, \zeta) \right] f(\zeta) \, d\xi d\eta + \int_{\Omega} \Gamma(z, \zeta) f(\zeta) \, d\xi d\eta =: u_1(z) + u_2(z)$$

The second integral on the right-hand side, which we denoted by u_2, satisfies $\Delta u_2 = f$. Indeed, setting $f = 0$ outside of Ω leads to $f \in C^2_{\text{comp}}(\mathbb{R}^2)$ and we can apply the discussion centered around (8.2). As for u_1, we have

$$u_1(\cdot) = \int_{\Omega} h(\cdot, \zeta)f(\zeta) \, d\xi d\eta \in C(\Omega)$$

by continuity of h. Moreover, the mean value property holds:

$$\int_0^1 u_1(z_0 + re^{2\pi i \theta}) d\theta = u_1(z_0)$$

for all $z_0 \in \Omega$ and small $r > 0$. This follows from Fubini’s theorem since $h(\cdot, \zeta)$ is jointly continuous and satisfies the mean value property in the first variable. Thus, u_1 is harmonic and $\Delta u = f$ as desired.

So which $\Omega \subset \mathbb{C}$ admit a Green function? For example, take $\Omega = \mathbb{D}$. Clearly, $G(z, 0) = \frac{1}{2\pi i} \log |z|$ does the trick for $\zeta = 0$. Next, we map ζ to 0 by the M"obius transformation $T(z) = \frac{z - \zeta}{1 - z \zeta}$. This yields

$$G_{\mathbb{D}}(z, \zeta) = \frac{1}{2\pi i} \log \left| \frac{z - \zeta}{1 - z \zeta} \right|$$

as our Green function for \mathbb{D}. It clearly satisfies Definition 8.1. Moreover, by inspection,

$$G_{\mathbb{D}}(z, \zeta) = G_{\mathbb{D}}(\zeta, z) \quad \forall \, z, \zeta \in \mathbb{D}$$

1The assumptions on f in the previous lemma can be relaxed, but this does not concern us here.
Now let Ω be the disk with $n \geq 1$ points removed, i.e., $\Omega = \mathbb{D} \setminus \{z_1, \ldots, z_n\}$. If G were a Green function on Ω, then for all $\zeta \in \Omega$, $z \mapsto G(z, \zeta)$ would need to be continuous in a neighborhood of z_j for all $1 \leq j \leq n$ and harmonic away from z_j. Then each z_j would constitute a removable singularity and $G(z, \zeta)$ (see Problem 29) therefore be harmonic in a disk around each z_j. In other words, G would be the Green function of \mathbb{D} and therefore negative at each z_j violating the vanishing condition. In conclusion, Ω does not admit a Green function in the sense of Definition 8.1.

Finally, any simply connected $\Omega \subset \mathbb{C}$ for which the Riemann mapping $f : \Omega \to \mathbb{D}$ extends continuously to $\overline{\Omega}$ admits a Green function (for this it suffices to assume that $\partial \Omega$ consists of finitely many C^1 arcs). Indeed, observe that $G_{\Omega}(z, \zeta) := G_{\mathbb{D}}(f(z), f(\zeta))$ satisfies Definition 8.1. This procedure applies to unbounded Ω, for example $\Omega = \mathbb{H}$. It automatically enforces the vanishing condition at infinity required by the fact that we view $\Omega \subset \mathbb{C}_\infty$.

This discussion raises the following interesting question: Is it possible to construct the Riemann mapping $\Omega \to \mathbb{D}$ from the Green function on Ω (assuming it exists)? The answer, which was found by Riemann, is “yes”.

Theorem 8.3. Suppose $\Omega \subset \mathbb{C}_\infty$ is simply connected and admits a Green function. Then G gives rise to a bi-holomorphic mapping $f : \Omega \to \mathbb{D}$.

Proof. The idea is simply to write, with $\zeta \in \Omega$ fixed,

$$2\pi G(z, \zeta) = \log |z - \zeta| + \text{Re} F(z)$$

where $F \in \mathcal{H}(\Omega)$ (this can be done since Ω is simply connected). Then we set

$$f_\zeta(z) := (z - \zeta) \exp(F(z)) \in \mathcal{H}(\Omega)$$

Note that f_ζ is unique up to a unimodular number. By construction,

$$|f_\zeta(z)| = \exp(\log |z - \zeta| + \text{Re} F(z)) = \exp(2\pi G(z, \zeta)) < 1$$

for all $z \in \Omega$ so that $f_\zeta : \Omega \to \mathbb{D}$; furthermore, $|f_\zeta(z)| = 1$ for all $z \in \partial \Omega$ and $|f_\zeta|$ extends as a continuous mapping to all of $\overline{\Omega}$.

We claim that $f(\Omega) = \mathbb{D}$. By analyticity and since f is obviously not constant, $f(\Omega)$ is open. To show that it is closed, suppose that $f(z_n) \to w \in \mathbb{D}$. Then $z_n \to z_{\infty} \in \overline{\Omega}$ (if needed, pass to a subsequence of z_n, which we call z_n again; recall that we are viewing $\Omega \subset \mathbb{C}_\infty$ which is compact). If $z_{\infty} \in \partial \Omega$, necessarily $|w| = 1$ which is a contradiction. So $z_{\infty} \in \Omega$ and $f(z_n) \to f(z_{\infty}) = w$ which shows that $f(\Omega)$ is closed.

It remains to show that f is one-to-one. Locally around ζ this is clear (why?), but not globally on Ω. We also remark that $f_\zeta(z) = 0$ if $z = 0$. In view of this, the logic is now as follows: suppose f_ζ is one-to-one for any $\zeta \in \Omega$. Then $T := f_\eta \circ f_\zeta^{-1} \in \text{Aut}(\mathbb{D})$ is a Möbius transformation which takes $f_\zeta(\eta)$ to 0. This suggests we prove the following converse for arbitrary $\eta \in \Omega \setminus \{\zeta\}.$
Claim: Let \(f_\zeta(\eta) = w \) and \(T(w) = 0, T \in \text{Aut}(D) \). Then \(|T \circ f_\zeta| = |f_\eta|\).

If the claim holds, then we are done: assume that \(f_\zeta(\eta) = f_\zeta(\tilde{\eta}) = w \in D \) and let \(T(w) = 0 \) were \(T \in \text{Aut}(D) \). Then

\[
|T \circ f_\zeta| = |f_\eta| = |f_{\bar{\eta}}|
\]

so that \(f_{\bar{\eta}}(\eta) = 0 \) implies \(\eta = \tilde{\eta} \) as desired. To prove the claim, note that for any \(0 < \varepsilon < 1 \), and some integer \(k \geq 1 \),

\[
\log |T \circ f_\zeta(z)| = k \log |z - \eta| + O(1) \leq \log |z - \eta| + O(1) \leq 2\pi(1 - \varepsilon)G(z, \eta)
\]

as \(z \to \zeta \). Moreover,

\[
\limsup_{z \to \zeta} \log |T \circ f_\zeta(z)| \leq 0, \quad G(z, \eta) \to 0 \quad \text{as} \quad z \to \partial \Omega
\]

Hence, on \(\Omega \setminus D(\zeta, \delta) \) for all \(\delta > 0 \) small, we see that the harmonic function \(2\pi G(\cdot, \eta) \) dominates the subharmonic function \(\log |T \circ f_\zeta(\cdot)| \) on \(\Omega \setminus \{\eta\} \). In conclusion,

\[
\log |T \circ f_\zeta(\cdot)| \leq 2\pi G(\cdot, \eta)
\]

In particular, since \(T(z) = \frac{z-w}{1-z\bar{w}} \) and thus \(T(0) = -w, \)

\[
2\pi G(\eta, \zeta) = \log |f_\zeta(\eta)| = \log |w| = \log |T(0)| = \log |T \circ f_\zeta(\cdot)| \leq 2\pi G(\zeta, \eta)
\]

whence \(G(\eta, \zeta) \leq G(\zeta, \eta) \) which implies

\[
G(\zeta, \eta) = G(\eta, \zeta)
\]

This is the well-known symmetry property of the Green function. It follows that we have equality in (8.4)

\[
\log |T \circ f_\zeta(\cdot)| = 2\pi G(\zeta, \eta)
\]

from which we conclude via the strong maximum principle on \(\Omega \setminus \{\eta\} \) that

\[
\log |T \circ f_\zeta(\cdot)| = 2\pi G(\cdot, \eta) = \log |f_\eta(\cdot)|
\]

as claimed. This finishes the proof.

The importance of this argument lies with the fact that it extends from domains \(\Omega \subset \mathbb{C} \) to simply connected Riemann surfaces \(M \), at least to those that admit a Green function — see the following chapter for the exact definition of this concept on Riemann surfaces (we caution the reader that a Green function \(G \) on a Riemann surfaces will not necessarily conform to Definition 8.1 above in case \(M \subset \mathbb{C} \)).
Let us now consider the important problem of finding the Green function on bounded domains $\Omega \subset \mathbb{C}$. Fix $\zeta \in \Omega$ and solve – if possible – the Dirichlet problem

$$\Delta u(z) = 0 \text{ in } \Omega, \quad u(z) = -\log |z - \zeta| \text{ on } \partial \Omega \quad (8.6)$$

Then $G(z, \zeta) := u(z) + \log |z - \zeta|$ is the Green function. This was Riemann’s original approach, but he assumed that (8.6) always has a solution via the so-called “Dirichlet principle”. In modern terms this refers to the fact that the variational problem, with $f \in C^1(\Omega)$ and $\partial \Omega$ being C^2 regular,

$$\inf_{u \in \mathcal{A}} \int_{\Omega} |\nabla u|^2 \, dx \, dy$$

$$\mathcal{A} := \{u \in H^1(\Omega) \mid u - f \in H^1_0(\Omega)\}$$

has a (unique) minimizer $u_0 \in \mathcal{A}$ (minimizer here means that u_0 attains the infimum). Here $H^1(\Omega) = \{u \in L^2(\Omega) \mid \nabla u \in L^2(\Omega)\}$ is the Sobolev space where ∇u is the distributional derivative, and $H^1_0(\Omega) \subset H^1(\Omega)$ is the subspace of vanishing trace. It is a standard fact, see Evans’s book, that Dirichlet’s principle holds and that the minimizer u_0 is a harmonic function so that $u_0 - f \in C(\overline{\Omega})$ vanishes on $\partial \Omega$ as desired. Riemann did not have this Hilbert spaces machinery at his disposal, however.

Instead, we will use an elegant method due to Perron based on subharmonic functions. It requires less on the boundary than the variational approach. We first need to lift the concept of subharmonic functions to a general Riemann surface M.

Definition 8.4. A function $u : M \to [-\infty, \infty]$ is subharmonic iff it is continuous and subharmonic in every chart. We denote the class of subharmonic functions on the Riemann surface M by $\text{sh}(M)$.

Since subharmonicity is preserved under conformal transformations, this definition is meaningful. From our definition it is clear that subharmonicity is a local property. Hence, properties that can be checked in charts immediately lift from the planar case to Riemann surfaces. Here are two examples:

- If $u \in C^2(M)$ then u is subharmonic iff $\Delta u \geq 0$ in every chart on M.
- If $u_1, \ldots, u_k \in \text{sh}(M)$, then $\max(u_1, \ldots, u_k) \in \text{sh}(M)$ and $\sum_{j=1}^k a_j u_j \in \text{sh}(M)$ for any $a_j \geq 0$.

The following lemma collects several global properties of this class which mirror those in the planar case. We begin with the maximum principle.

Lemma 8.5. The following properties hold for subharmonic functions:

1. If $u \in \text{sh}(M)$ attains its supremum on M, then $u = \text{const}$.

2. Let h be harmonic on M and $u \in \text{sh}(M)$. If $u \leq h$ on M then either $u < h$ or $u = h$ everywhere on M.

3. Let $\Omega \subset M$ be a domain with compact closure in M. Suppose h is harmonic on Ω and continuous on Ω. If

$$\limsup_{p \to q} u(p) \leq h(q) \quad \forall \ q \in \partial \Omega$$

(8.7)

then $u \leq h$ in Ω. Equality here can only be attained in Ω if $u = h$ throughout Ω.

Proof. For 1), assume that $u \leq u(p_0)$ with $p_0 \in M$. Then

$$E = \{ p \in M \mid u(p) = u(p_0) \}$$

is both open (since that is a local property and follows by considering charts) and closed. Hence $E = M$, as desired.

For 2), apply 1) to $u - h \in \text{sh}(M)$.

For 3), it suffices to consider the case $h = 0$ (otherwise consider $u - h$). If $u(p) > 0$ for any $p \in \Omega$, then u attains its supremum on Ω and is therefore constant. But this would clearly contradict (8.7). Hence, $u \leq 0$ on Ω with equality being attained at one point forcing constancy by 2).

We remark that property 2) above characterizes $\text{sh}(M)$ and gives a nice way of defining subharmonic functions intrinsically on Riemann surfaces. For future purposes we denote property (8.7) by $u \ll h$ on $\partial \Omega$. We are now going to describe Perron’s method for solving the following Dirichlet problem on a Riemann surface M:

Let $\Omega \subset M$ be a domain with $\overline{\Omega}$ compact and suppose $\phi : \partial \Omega \to \mathbb{R}$ is continuous. Find $u \in C(\overline{\Omega})$ so that u is harmonic on Ω and $u = \phi$ on $\partial \Omega$.

The first step towards the solution is furnished by showing that the upper envelope of all subharmonic functions v on Ω with $v \ll \phi$ is harmonic. The second step then addresses how to ensure that the boundary data are attained continuously. For the first step we need to following easy result.

Lemma 8.6. Let D be a parametric disk and suppose $f \in \text{sh}(M)$ is real-valued. Let h be the harmonic function on D which has f as boundary values on ∂D.

The function

$$f_D := \begin{cases} f & \text{on } M \setminus D \\ h & \text{on } D \end{cases}$$

satisfies $f_D \in \text{sh}(M)$ and $f_D \geq f$.

Proof. It is clear that f_D is continuous. By the maximum principle, $f_D \geq f$. It is easy to see that f_D is subharmonic on $M \setminus \partial D$. However, if $p \in \partial D$, then we see from $f_D \geq f$ that the sub-mean value property holds at p for sufficiently small circles (relative to some chart at p). Therefore, $f_D \in \text{sh}(M)$ as claimed. \(\square\)
Now for the first step in Perron’s method.

Proposition 8.7. Let ϕ be any bounded function on $\partial \Omega$. Then

$$u = \sup \{ v \mid v \in \mathcal{SH}(\Omega), \; v \ll \phi \text{ on } \partial \Omega \} \quad (8.8)$$

is harmonic on Ω.

Proof. Denote the set on the right-hand side of (8.8) by S_ϕ. First note that any $v \in S_\phi$ satisfies

$$\sup_{\Omega} v \leq \sup_{\partial \Omega} \phi < \infty$$

Moreover, replacing any $v \in S_\phi$ by $\max(v, \inf_{\partial \Omega} \phi)$, we can assume that all $v \in S_\phi$ are bounded below. Take any $p \in \Omega$ and a sequence of $\{v_n\}_{n=1}^\infty \subset S_\phi$ so that $v_n(p) \to u(p)$. Replacing the sequence by $v_1, \max(v_1, v_2), \max(v_1, v_2, v_3), \ldots$ we may assume that $\{v_n\}_{n=1}^\infty$ is non-decreasing. In addition, by Lemma 8.6 each v_n can be assumed to be harmonic on some parametric disk D centered at p. By Harnack’s inequality on D, $v_n \to v_\infty$ uniformly on compact subsets of D with v_∞ harmonic on D.

It remains to check that $u = v_\infty$ on D. Take any $q \in D$ and let $\{w_n\}_{n=1}^\infty \subset S_\phi$ with $w_n(q) \to u(q)$. As before, we can assume that w_n is harmonic and increasing on D. In fact, we can also assume that $w_n \geq v_n$ for each n. We conclude that $w_n \to w_\infty$ uniformly on compact sets with w_∞ harmonic on D and $w_\infty(p) = v_\infty(p)$. Since $w_\infty \geq v_\infty$ in D, it follows that $w_\infty = v_\infty$ on D. In particular, $u(q) = v_\infty(q)$ and we are done. \qed

It is worth noting that this proof has little to do with ϕ. In fact, it applies to any Perron family which we now define.

Definition 8.8. A family \mathcal{F} of real-valued subharmonic functions on a Riemann surface M is called Perron family iff

- for any $f, g \in \mathcal{F}$ there is $h \in \mathcal{F}$ with $h \geq \max\{f, g\}$

- for any parametric disk $D \subset M$ and any $v \in \mathcal{F}$ there exists $w \in \mathcal{F}$ with w harmonic on D and $w \geq v$

Then we have the following immediate corollary of the proof of Proposition 8.7:

Lemma 8.9. For any Perron family \mathcal{F} on a Riemann surface M the function

$$u := \sup_{v \in \mathcal{F}} v$$

is either $\equiv \infty$ or harmonic on M.
Next, we turn to the boundary behavior. For a standard example of what can go wrong on the boundary consider \(\Omega = \mathbb{D} \setminus \{0\} \). Setting \(\phi(0) = 0 \) and \(\phi(z) = 1 \) for \(|z| = 1 \) we see that Perron’s method yields \(u = \text{const} = 1 \); indeed, for any \(\varepsilon > 0 \) the function \(v(z) = 1 + \varepsilon \log |z| \in S_\phi \).

Definition 8.10. A barrier at a point \(p \in \partial \Omega \) is defined to be a function \(\beta \) with the following properties:

- \(-\beta \in \mathfrak{h}(\Omega) \)
- \(\beta \in C(\overline{\Omega}) \) and \(\beta \geq 0 \) on \(\overline{\Omega} \) with \(\beta > 0 \) on \(\overline{\Omega} \setminus \{p\} \), and \(\beta(p) = 0 \)

Any point \(q \in \partial \Omega \) which admits a barrier is called regular and \(\partial \Omega \) is called regular iff all of its points are regular.

It turns out that regularity of a boundary point is a mild condition:

Lemma 8.11. Suppose \(p \in \partial \Omega \) satisfies an exterior disk condition, i.e., there exists a disk \(D(z_0, \varepsilon) \) in local coordinates \((U, z) \) around \(p \) so that

\[
z(\Omega \cap U) \cap D(z_0, \varepsilon) = \{p\}
\]

Then \(p \) is regular. In particular, any \(C^2 \) boundary is regular. Moreover, suppose that \(p \in \partial \Omega \) is accessible, i.e.,

\[
z(\Omega \cap U) \subset \mathbb{D} \setminus (-1, 0]
\]

in some chart \((U, z) \) with \(z(p) = 0 \). Then \(p \) is regular.

Proof. For the exterior disk condition, we define for all \(q \in \Omega \),

\[
\beta(q) = \begin{cases}
\log(|z(q) - z_0|/\varepsilon) & \text{if } |z(q) - z_0| \leq \delta \\
\log(\delta/\varepsilon) & \text{if } |z(q) - z_0| > \delta
\end{cases}
\]

where \(\delta > \varepsilon > 0 \) are sufficiently small. If \(p \in \partial \Omega \) is accessible, then we map \(\mathbb{D} \setminus (-1, 0] \) conformally onto a sector of angle \(\leq \pi \) which guarantees the exterior disk condition at \(p \). \(\square \)

An obvious example of a non-accessible boundary point is \(p = 0 \) for \(\Omega = \mathbb{D} \setminus \{0\} \). The importance of barriers lies with the following fact:

Proposition 8.12. Suppose \(p \in \partial \Omega \) is regular and \(\phi \) a bounded function on \(\partial \Omega \) which is continuous at \(p \). Then the function \(u \) from Proposition 8.7 satisfies

\[
\lim_{q \to p} u(q) = \phi(p)
\]

In particular, if \(\partial \Omega \) is regular and \(\phi : \partial \Omega \to \mathbb{R} \) is continuous, then \(u \) is a solution of Dirichlet’s problem on \(\Omega \) with boundary data \(\phi \).
Proof. Let S_{ϕ} be as in Proposition 8.7. Recall that
\[\inf_{\partial \Omega} \phi \leq v \leq \sup_{\partial \Omega} \phi \quad (8.9) \]
for any $v \in S_{\phi}$. We now claim the following: given $\varepsilon > 0$ there exists $C = C(\varepsilon)$ such that
\[v(q) - C\beta(q) \leq \phi(p) + \varepsilon \quad \forall \ q \in \Omega \quad (8.10) \]
for any $v \in S_{\phi}$. To prove this, we let D be a small parametric disk centered at p. It can be chosen so that
\[\sup_{\partial (\Omega \cap D)} v - C\beta \leq \phi(p) + \varepsilon \]
due to the continuity of ϕ, the positivity
\[\min_{\Omega \setminus D} \beta > 0, \]
and provided C is large enough. The maximum principle now shows that (8.10) holds on $\Omega \cap D$. On $\Omega \setminus D$, we let C be so large that (8.10) holds due to (8.9). In conclusion,
\[\limsup_{q \to p} u(q) \leq \phi(p) + \varepsilon \]
For the lower bound, we observe by the same arguments that
\[-C\beta + \phi(p) - \varepsilon \in S_{\phi} \]
Hence,
\[u \geq -C\beta + \phi(p) - \varepsilon \]
so that
\[\liminf_{q \to p} u(q) \geq \phi(p) - \varepsilon \]
as desired. \qed

We remark that the regularity of $\partial \Omega$ is also necessary for the solvability of the Dirichlet problem for general continuous boundary data; indeed, the boundary data $f(p) = |p - p_0|$ yields a barrier.

Let us make another remark concerning solving the Dirichlet problem outside some compact set $K \subset M$. As the example $K = D \subset 2D$ shows, we cannot expect unique solvability of the Dirichlet problem with data on ∂K. However, the Perron method always yields existence of bounded harmonic functions. The following result is a corollary of the proof of the preceding proposition.

Corollary 8.13. Let $K \subset M$ be compact and ∂K regular. Then for any $\phi : \partial K \to \mathbb{R}$ continuous and any constant $A \geq \max_{\partial K} \phi$ there exists a harmonic function u on $\Omega := M \setminus K$ with $u \in C(\overline{\Omega})$, $u = \phi$ on $\partial \Omega$ and
\[\min_{\partial \Omega} \phi \leq u \leq A \]
on Ω.

Proof. Define
\[u := \sup\{v \mid v \in \mathcal{SH}(\Omega), \ v \ll \phi \ on \ \partial\Omega, \ v \leq A\} \quad (8.11) \]
Clearly, the set on the right-hand side is a non-empty Perron family and \(u \) is harmonic on \(\Omega \) and satisfies (8.11). Let \(\beta_0 \) be a barrier at \(p \in \partial\Omega \). Let \(D, D' \) be parametric disks centered at \(p \) and \(D' \) compactly contained in \(D \) and \(\bar{D} \) compact. Then for \(\varepsilon > 0 \) sufficiently small, the function
\[\beta := \min\{\beta_0, \varepsilon\} \ on \ D \cap \Omega \]
is superharmonic on \(D \) with the property that \(\beta = \varepsilon \) on \(\Omega \cap D \setminus D' \). This shows that we can extend \(\beta \) to all of \(\Omega \) by setting
\[\beta = \varepsilon \ on \ \Omega \setminus D \]
The point is that we have constructed a barrier \(\beta \) at \(p \) which is uniformly bounded away from zero on \(\Omega \setminus D \) (this is another expression of the fact that being regular is a local property around a point). Since \(u \) is bounded from above and below, the reader will have no difficulty verifying that the exact same proof as in Proposition 8.12 applies in this case.

In the following two chapters it will become clear that the solution constructed in Corollary 8.13 is unique iff \(M \) does not admit a negative nonconstant subharmonic function (or in the terminology of the following chapter, if \(M \) is not hyperbolic). An example would be \(M = \mathbb{C} \) (the reader is invited to establish uniqueness in Corollary 8.13 in that case). Note that this uniqueness is clear (as is the existence from Proposition 8.12) if \(M \) is compact. From the classification that we develop in the following two chapters it will become clear that uniqueness in Corollary 8.13 with \(M \) not compact holds iff \(M \) is conformally equivalent to \(\mathbb{C} \) while it does not hold iff \(M \) is conformally to \(\mathbb{D} \).

To summarize, we have solved the Dirichlet problem for all domains \(\Omega \subset M \) with compact closure and regular boundary. In particular, if \(M = \mathbb{C}_\infty \), any such domain admits a Green function. Moreover, if \(\Omega \subset \mathbb{C} \) is simply connected, then \(G \) gives rise to a biholomorphic \(f : \Omega \rightarrow \mathbb{D} \). This latter fact (the Riemann mapping theorem) we proved earlier in a completely different way which did not require any information on the boundary.
Chapter 9

Green functions on Riemann surfaces and the classification problem

We would like to generalize the proof of the Riemann mapping theorem from the previous chapter to any Riemann surface M which admits a Green function. But what is the correct definition of a Green function G on M? Since there is no boundary, at least in the topological sense, we need to find a substitute for the crucial vanishing condition at the boundary. One option would be to require “vanishing at infinity”, i.e.,

$$\inf_{K \text{ compact}} \sup_{p \in M \setminus K} |G(p, q)| = 0$$

However, this turns out to be too restrictive. As an example, consider $M = \mathbb{D} \setminus \{0\}$. “Infinity” here is the set $\{0\} \cup \{|z| = 1\}$ but we cannot enforce vanishing at $\{0\}$. However, the Green function on \mathbb{D} is — in a very precise sense — also the Green function of $\mathbb{D} \setminus \{0\}$. In fact, uniquely so, as we shall see. The issue here is that a single point is negligible (more generally, sets of zero logarithmic capacity are negligible). While it is of course true that this M is not simply connected, it would be unwise to introduce simple connectivity into the concept of the Green function.

As often in analysis, the correct definition of a Green function on M imposes a minimality condition on G. Following a time-honored tradition, we will consider positive Green functions rather than negative ones. Of course, this just amounts to switching the sign. In addition, we drop the factor of 2π.

Definition 9.1. By a Green function with singularity at $q \in M$ we mean a real-valued function $G(p, q)$ defined on $M \setminus \{q\}$ such that

- $G(p, q) + \log |z|$ is harmonic locally around $p = q$ where z are local coordinates near q with $z(q) = 0$
• $p \mapsto G(p, q)$ is harmonic and positive on $M \setminus \{q\}$

• if $g(p, q)$ is any other function satisfying the previous two conditions, then $g(\cdot, q) \geq G(\cdot, q)$ on $M \setminus \{q\}$.

It is evident that G is unique if it exists. Also, if $f : N \to M$ is a conformal isomorphism, then it is clear that $G(f(p), f(q))$ is the Green function on N with singularity at q. By the maximum principle, if G is a Green function as in the previous chapter, then $-G$ satisfies Definition 9.1. We remark that no compact surface M admits such a Green function (since $-G(\cdot, q)$ would then be a negative subharmonic function on M and therefore constant by the maximum principle). Note that $M = \mathbb{C}$ does not admit a Green function either:

Lemma 9.2. Suppose $u < \mu$ is a subharmonic function on \mathbb{C} with some constant $\mu < \infty$. Then $u = \text{const}$.

Proof. Let us first observe the following: suppose v is subharmonic and negative on $0 < |z| < 2$ and set $v_{\varepsilon}(z) := v(z) + \varepsilon \log |z|$ where $0 < \varepsilon < 1$. Then v_{ε} is subharmonic on $0 < |z| < 1$. Moreover, $v_{\varepsilon}(z) = v(z)$ for all $|z| = 1$ and $v_{\varepsilon}(z) \to -\infty$ as $z \to 0$. It follows from the maximum principle that $v_{\varepsilon}(z) \leq \max_{|z|=1} v(z) < 0$ for all $0 < |z| < 1$. Now send $\varepsilon \to 0$ to conclude that $v(z) \leq \max_{|z|=1} v(z) < 0$ for all $0 < |z| \leq 1$.

To prove the lemma, we may assume that $u < 0$ everywhere and $\sup_{\mathbb{C}} u = 0$. Consider $u(1/z)$ on $0 < |z| < 2$. It is subharmonic and negative and therefore by the preceding paragraph

$$\sup_{|z| \geq 1} u(z) < 0.$$

It follows that $\sup_{|z| \leq 1} u(z) = 0$ which is impossible. \qed

So which M do admit Green functions? As we saw, \mathbb{D} and thus any domain in \mathbb{C} conformally equivalent to it. Note that these surfaces obviously admit negative nonconstant subharmonic functions. This suggests a classification:

Definition 9.3. A Riemann surface M is called hyperbolic iff it carries a non-constant negative subharmonic function. If M is not hyperbolic and noncompact, then it is called parabolic.

The logic here is as follows: using the exact same proof idea as in the Theorem 2 of the previous chapter we will show that the hyperbolic, simply connected surfaces are conformally equivalent to \mathbb{D}, whereas Riemann-Roch showed that the compact simply connected ones are conformally equivalent to $\mathbb{C}P^1$. This leaves the simply connected parabolic surfaces, and — you have guessed it — they are conformally equivalent to \mathbb{C}.

In conclusion, every simply connected Riemann surface is conformally equivalent to either \mathbb{D}, \mathbb{C} or $\mathbb{C}P^1$. In the non-simply connected case, one then passes to the universal covering of M, which is again a Riemann surface \tilde{M}, and proves that M is obtained from \tilde{M} by factoring by the covering group. All of these facts constitute the so-called uniformization theorem. It is of course a famous and central result of the field.
Now for the hard work of constructing Green functions as in Definition 9.1. We will do this via a Perron-type argument by setting

\[G(p, q) := \sup_{v \in \mathcal{G}_q} v(p), \]

(9.1)

the supremum being taken over the family \(\mathcal{G}_q \) that we now define.

Definition 9.4. Given any \(q \in M \) we define a family \(\mathcal{G}_q \) of functions as follows:

- any \(v \) in \(\mathcal{G}_q \) is subharmonic on \(M \setminus \{q\} \)
- \(v + \log |z| \) is bounded above on \(U \) where \((U, z) \) is some chart around \(q \)
- \(v = 0 \) on \(M \setminus K \) for some compact \(K \subset M \)

Since \(0 \in \mathcal{G}_q \) we have \(\mathcal{G}_q \neq \emptyset \). Note that if \(G(p, q) \) is a Green function on some domain \(\Omega \subset \mathbb{C} \) in the sense of the previous chapter, then

\[(-G(p, q) - \varepsilon)_+ \in \mathcal{G}_q \]

for any \(\varepsilon > 0 \). As another example, let \(M = \mathbb{C} \) and \(q = 0 \). Clearly, \(-\log_+(|z|/R) \in \mathcal{G}_0 \) for any \(R > 0 \). This shows that \(G(p, 0) \) as defined in (9.1) satisfies \(G(p, 0) = \infty \) for all \(p \in \mathbb{C} \). As we shall see shortly, this agrees with the fact that \(\mathbb{C} \) does not admit a negative nonconstant subharmonic function. In general, one has the following result.

Theorem 9.5. Let \(q \in M \) be fixed and let \(G(p, q) \) be defined as in (9.1). Then either \(G(p, q) = \infty \) for all \(p \in M \) or \(G(p, q) \) is the Green function of \(M \) with singularity at \(q \). Moreover,

\[\inf_{p \in M} G(p, q) = 0 \]

Proof. Observe that \(\mathcal{G}_q \) is a Perron family. Hence, by the methods of the previous chapter, either \(G(\cdot, q) = \infty \) identically or it is harmonic.

Next, we need to check that \(p \mapsto G(p, q) + \log |z(p)| \) is harmonic locally near \(p = q \). In fact, it suffices to check that

\[G(p, q) = -\log |z| + O(1) \quad \text{as} \quad p \to q \]

(9.2)

where \(z = z(p) \) since \(G(p, q) + \log |z(p)| \) then has a removable singularity at \(p = q \) as a harmonic function. If \(v \in \mathcal{G}_q \), then locally around \(q \) and for any \(\varepsilon > 0 \),

\[v(p) + (1 + \varepsilon) \log |z(p)| \]

is subharmonic and tends to \(-\infty\) as \(p \to q \). Therefore, by the maximum principle, for any \(p \in z^{-1}(\mathbb{D} \setminus \{0\}) \),

\[v(p) + (1 + \varepsilon) \log |z(p)| \leq \sup_{z^{-1}(\partial \mathbb{D})} v \leq \sup_{z^{-1}(\partial \mathbb{D})} G(\cdot, q) =: k(q) \]
Hence, locally around q,

\[
G(p, q) \leq -\log |z(p)| + k(q)
\]

For the reverse direction, simply note that

\[
v(p) = \log(1/|z(p)|) \in G_q
\]

Let $\mu = \inf_{p \in M} G(p, q) \geq 0$. If $v \in G_q$, then outside some compact set K, and with $\varepsilon > 0$ arbitrary

\[
v = 0 \leq G(p, q) - \mu
\]

whereas

\[
(1 - \varepsilon)v(p) \leq G(p, q) - \mu \text{ as } p \to q
\]

By the maximum principle,

\[
(1 - \varepsilon)v \leq G(\cdot, q) - \mu \text{ on } M \setminus \{q\}
\]

Letting $\varepsilon \to 0$ and by the definition of G, $G(\cdot, q) \leq G(\cdot, q) - \mu$ which implies that $\mu \leq 0$ and thus $\mu = 0$ as claimed.

Finally, suppose that $g(\cdot, q)$ satisfies the first two properties in Definition 9.1. Then for any $v \in G_q$, and any $0 < \varepsilon < 1$,

\[
(1 - \varepsilon)v \leq g(\cdot, q)
\]

by the maximum principle. It follows that $G \leq g$ as desired. \qed

Next, we establish the connection between M being hyperbolic and M admitting a Green function. This is subtle and introduces the important notion of harmonic measure.

Theorem 9.6. For any Riemann surface M the following are equivalent:

- M is hyperbolic
- the Green function $G(\cdot, q)$ with singularity at q exists for some $q \in M$
- the Green function $G(\cdot, q)$ with singularity at q exists for each $q \in M$

Proof. We need to prove that a hyperbolic surface admits a Green function with an arbitrary singularity. The ideas are as follows: we need to show that $G(p, q) < \infty$ if $p \neq q$ which amounts to finding a “lid” for our family G_q. In other words, we need to find a function, say $w_q(p)$, harmonic or superharmonic on $M \setminus \{q\}$ and positive there, and so that $w_q(p) = -\log |z(p)| + O(1)$ as $p \to q$. Indeed, in that case we simply observe that $v \leq w$ for every $v \in G_q$. Of course, G itself is such a choice if it exists – so realistically we can only hope to make w_q superharmonic. So we need to find a subharmonic function (which would be $-w_q$) which is bounded from above and has a $\log |z(p)| + O(1)$ type singularity as $p \to q$ (let us call it v_1). By assumption, there exists a negative subharmonic function v_0 on M. It, of course, does not fit the description of v_1 since it does
not necessarily have the desired logarithmic singularity. So we shall need to “glue” \(\log |z(p)| \) in a chart around \(q \) to a subharmonic function like \(v_0 \) which is bounded from above. However, it is hard to glue subharmonic functions. Instead, we will produce a harmonic function \(u \) that vanishes on the boundary of some parametric disk \(D \) and which is positive\(^1\) on \(M \setminus D \) (by solving the Dirichlet problem outside of \(D \)). The crucial property of \(u \) is its positivity on \(M \setminus D \) and this is exactly where we invoke the nonconstancy of \(v_0 \).

The details are as follows. Pick any \(q \in M \) and a chart \((U, z) \) with \(z(q) = 0 \). We may assume that \(D_2 := z^{-1}(2\mathbb{D}) \) and its closure are contained in \(U \). Set \(D_1 := z^{-1}(\mathbb{D}) \). Consider the Perron family \(F \) of all \(v \in \mathcal{SH}(M \setminus \overbar{D}_1) \) with \(v \ll 0 \) on \(\partial D_1 \) and such that \(0 \leq v \leq 1 \) on \(M \setminus D_1 \). By Corollary 8.13, \(u := \sup_{v \in F} v \) is continuous on \(M \setminus \overbar{D}_1 \) with \(u = 0 \) on \(\partial D_1 \) and \(0 \leq u \leq 1 \). We claim that \(u \neq 0 \). To this end, let \(v_0 < 0 \) be a non-constant subharmonic function on \(M \) and set \(\mu = \max_{\overbar{D}_1} v_0 \). Then \(\mu \leq 0 \) and

\[
1 - \frac{v_0}{\mu} = 1 + \frac{v_0}{|\mu|} \in \mathcal{F}
\]

Hence, \(|\mu| + v_0 \leq |\mu|u \). By non-constancy of \(v_0 \),

\[
\max_{\overbar{D}_2} v_0 > \mu
\]

so that \(u > 0 \) somewhere and therefore \(u > 0 \) everywhere on \(M \setminus \overbar{D}_1 \). We shall now build a subharmonic function \(v_1 \), globally defined on \(M \) and bounded above, and such that \(v_1 \) behaves like \(\log |z| \) around \(q \). In fact, define

\[
v_1 := \begin{cases}
\log |z| & \forall |z| \leq 1 \\
\max\{\log |z|, ku\} & \forall 1 \leq |z| \leq 2 \\
ku & \forall z \in M \setminus D_2
\end{cases}
\]

Here the constant \(k > 0 \) is chosen such that

\[
ku > \log 2 \quad \forall |z| = 2
\]

Due to this property, and the fact that \(u = \log |z| = 0 \) on \(|z| = 1 \), \(v_1 \in C(M) \). Moreover, checking in charts reveals that \(v_1 \) is a subharmonic function off the circle \(|z| = 1 \). Since the sub-mean value property holds locally at every \(|z| = 1 \) we finally conclude that \(v_1 \) is subharmonic everywhere on \(M \).

We are done: Indeed, any \(v \in G_q \) (see Definition 9.4) satisfies

\[
v \leq \nu - v_1
\]

Hence, \(G(p, q) \leq \nu - v_1(p) < \infty \) for any \(p \in M \setminus \{q\} \).

The previous proof shows that if some compact parametric disk admits a harmonic measure, then \(M \) is hyperbolic. Let us now elucidate the important

\(^1\) \(1 - u \) is called the harmonic measure of \(\partial D \) relative to \(M \setminus D \).
CHAPTER 9. GREEN FUNCTIONS AND CLASSIFICATION

symmetry property of the Green function. We already encountered it in the previous chapter as part of the Riemann mapping theorem. However, it has nothing to do with simple connectivity as we will now see.

We begin with the following simple observation.

Lemma 9.7. Let M be hyperbolic and $N \subset M$ be a sub-Riemann surface with piecewise C^2 boundary\footnote{This means that we can write the boundary as a finite union of C^2 curves $\gamma : [0, 1] \to M$.} and \bar{N} compact. Then N is hyperbolic, $G_N \leq G$, and $G_N(p,q) = G_N(q,p)$ for all $p, q \in N$.

Proof. Fix any $q \in N$ and let u_q be harmonic on N, continuous on \bar{N} and with boundary data $-G(\cdot, q)$. This can be done by the results of the previous chapter. Then

$$G_N(p,q) := G(p,q) + u_q(p)$$

is the Green function on N. It follows from the maximum principle that $G_N \leq G$. To prove the symmetry property, fix $p \neq q \in N$ and let $N' = N \setminus D_1 \cup D_2$ where $D_1, D_2 \subset N$ are parametric disks around p, q, respectively. Define

$$u = G_N(\cdot, p), \quad v = G_N(\cdot, q)$$

Then, by Green’s formula on N,

$$0 = \int_{\partial N'} u * dv - v * du = \int_{\partial D_1 \cup \partial D_2} u * dv - v * du$$

Again by Green’s formula, but this time on D_1 with local coordinates z, centered at p ($z(p) = 0$),

$$\int_{\partial D_1} u * dv - v * du = \int_{\partial D_1} (u + \log |z|) * dv - v * d(u + \log |z|)$$

$$- \int_{\partial D_1} \log |z| * dv - v * d\log |z|$$

$$= G_N(p,q)$$

and similarly

$$\int_{\partial D_2} u * dv - v * du = -G_N(q,p)$$

as desired. \hfill \Box

To obtain the symmetry of G itself we simply take the supremum over all N as in the lemma. We will refer to those N as admissible.

Proposition 9.8. Let M be hyperbolic. Then the Green function is symmetric: $G(p,q) = G(q,p)$ for all $q \neq p \in M$.
Proof. Fix \(q \in M \) and consider the family
\[
\mathcal{F}_q = \{ G_N(\cdot, q) \mid q \in N, \text{ } N \text{ is admissible} \}
\]
where we extend each \(G_N \) to be zero outside of \(N \). This extension is subharmonic on \(M \setminus \{ q \} \) and \(\mathcal{F}_q \) is a Perron family on \(M \setminus \{ q \} \):
\[
\max \{ G_{N_1}(\cdot, q), G_{N_2}(\cdot, q) \} \leq G_{N_1 \cup N_2}(\cdot, q)
\]
and \(G_{N \cup D}(\cdot, q) \geq G_N(\cdot, q) \) for any parametric disk \(D \subset M \setminus \{ q \} \) with \(G_{N \cup D}(\cdot, q) \) harmonic on \(D \). Note that both \(N_1 \cup N_2 \) and \(N \cup D \) are admissible. Let
\[
g(\cdot, q) := \sup_{v \in \mathcal{F}_q} v \leq G(\cdot, q)
\]
Moreover, it is clear that
\[
g(\cdot, q) \geq \sup_{v \in G_q} v = G(\cdot, q)
\]
Indeed, simply use that every compact \(K \subset M \) is contained in an admissible \(N \) (take \(N \) to be the union of a finite open cover by parametric disks). In conclusion, \(g(p, q) = G(p, q) \) which implies that \(G_N(q, p) = G_N(p, q) \leq G(p, q) \) for all admissible \(N \). Hence, taking suprema, \(G(q, p) \leq G(p, q) \) and we are done. \(\square \)
Chapter 10

Uniformization I: The simply connected case

We can now state and prove the following remarkable classification result.

Theorem 10.1. Every simply connected surface M is conformally equivalent to either $\mathbb{C}P^1$, \mathbb{C}, or \mathbb{D}. These correspond exactly to the compact, parabolic, and hyperbolic cases, respectively.

The compact case was already done via Riemann-Roch, whereas for the hyperbolic case we will employ the Green function technique that lead to a proof of the Riemann mapping theorem in Chapter 8.

Proof of Theorem 10.1 for the hyperbolic case. Let $q \in M$ and $G(p, q)$ be the Green function with singularity at q. Then there exists f_q holomorphic on M with

$$|f_q(p)| = \exp(-G(p, q)) \quad \forall q \in M$$

with the understanding that $f_q(p) = 0$. This follows from gluing technique of Problem 40 since such a representation holds locally everywhere on M (alternatively, apply the monodromy theorem). Clearly, $f_q : M \to \mathbb{D}$ with $f_q(p) = 0$ iff $p = q$. It remains to be shown that f_q is one-to-one since then $f_q(M)$ is a simply connected subset of \mathbb{D} and therefore, by the Riemann mapping theorem, conformally equivalent to \mathbb{D}.

We proceed as in the planar case, see Theorem 8.3. Thus, let $p \in M$ with $q \neq p$ and T a M"obius transform with $T(f_q(p)) = 0$. We claim that $|T \circ f_q| = |f_p|$. Clearly, this will show that f_q is one-to-one (suppose $f_q(p) = f_q(p')$), then by the claim, $|f_p| = |f_{p'}|$ and thus $f_p(p') = 0$ and $p = p'$.

To prove the claim, we observe that

$$w_q := -\log |T \circ f_q| \geq G(\cdot, q) \quad \text{on } M \setminus \{q\}$$

Indeed, locally around $p = q$ we have, for some integer $k \geq 1$,

$$\log |T \circ f_q(p)| \leq k \log |z(p) - z(q)| + O(1) \quad \text{as } p \to q$$
where z are any local coordinates around q. In addition, $w_q > 0$ everywhere on M. From these properties we conclude via the maximum principle that

$$w_q \geq v \quad \forall v \in G_q \implies w_q \geq G(\cdot, q)$$

as desired (here G_q is the family from Definition 9.4). Since

$$-G(p, q) = \log |f_q(p)| = \log |T(0)| = \log |(T \circ f_q)(q)| \leq -G(q, p) = -G(p, q)$$

we obtain from the maximum principle that $w_q = G(\cdot, p)$ whence the claim.

It remains for us to understand the parabolic case. The logic is as follows with M simply connected: in the compact case we established the existence of a meromorphic function with a simple pole. This followed from the Riemann-Roch theorem which in turn was based (via a counting argument) on the existence of meromorphic differentials with a prescribed $\frac{dz}{z^2}$ singularity at a point.

In the hyperbolic case, we were able to place a positive harmonic function on M with a $-\log |z|$ singularity at a given point – in fact, the hyperbolic M are precisely the surfaces that allow for this. Amongst all such harmonic function we selected the minimal one (the Green function) and constructed a conformal equivalence from it.

For the parabolic case we would like to mimic the compact case by constructing a meromorphic function as before. In view of the fact that we are trying to show that M is equivalent to \mathbb{C}, and therefore compactifiable by the addition of one point this is reasonable. Assuming therefore that $f : M \to \mathbb{C}P^1$ is meromorphic and one-to-one, note that f cannot be onto as otherwise M would have to be compact. Without loss of generality, we can thus assume that $f : M \to \mathbb{C}$. If f were not onto \mathbb{C}, then by the Riemann mapping theorem we could make $f(M)$ and thus M equivalent to \mathbb{D}. But this would mean that M is hyperbolic. So it remains to find a suitable meromorphic function on M for which we need several more technical ingredients. The first is the maximum principle outside a compact set which establishes uniqueness in Corollary 8.13.

Proposition 10.2. Let M be a parabolic Riemann surface and $K \subset M$ compact. Suppose u is harmonic and bounded above on $M \setminus K$, and $u \ll 0$ on ∂K. Then $u \leq 0$ on $M \setminus K$.

Proof. We have already encountered this idea in the proof of Theorem 9.6. There K was a parametric disk and we proved that a hyperbolic surface does admit what is called a harmonic measure of K — here we are trying to prove the non-existence of a harmonic measure. Since the latter was shown there to imply the existence of a Green function, we are basically done. The only issue here is that K does not need to be a parametric disk so we have to be careful when applying the Perron method because of ∂K not necessarily being regular. However, this is easily circumvented.

Suppose the proposition fails and let $u > 0$ somewhere on $M \setminus K$. Extend u to M by setting $u = 0$ on K. Then $K \subset \{u < \varepsilon\}$ is an open neighborhood of K for every $\varepsilon > 0$. This implies that for some $\varepsilon > 0$ we have $u_0 := (u-\varepsilon)_+ \in \mathfrak{h}(M)$
and \(u_0 > 0 \) somewhere. Moreover, \(\{ u_0 = 0 \} \supset \bar{D} \) for some parametric disk \(D \).

Now define

\[
\mathcal{F} := \{ v \in \mathfrak{sh}(M \setminus \bar{D}) \mid v \ll 0 \text{ on } \partial D, \ 0 \leq v \leq 1 \}
\]

It is a Perron family, and from Chapter 8 we infer that \(w := \sup_{v \in \mathcal{F}} v \) is harmonic on \(M \setminus \bar{D} \) with \(w = 0 \) on \(\partial D \) and \(0 \leq w \leq 1 \) on \(M \setminus D \). Since \(u_0 \in \mathcal{F} \) we further conclude that \(w > 0 \) somewhere and thus everywhere on \(M \setminus D \). As in the proof of Theorem 9.6 we are now able to construct a Green function with singularity in \(D \), contrary to our assumption of \(M \) being parabolic.

It is instructive to give an independent proof of this fact for the case of \(C \): we may assume that \(0 \in K \). Then \(v(z) := u(1/z) \) is harmonic on \(\Omega := \{1/|z| \mid z \in \mathbb{C} \setminus K\} \) and \(v \ll 0 \) on \(\partial \Omega \setminus \{0\} \). Moreover, \(v \) is bounded above on \(\Omega \). Given \(\delta > 0 \) there exists \(R \) large so that for all \(\varepsilon > 0 \)

\[
v(z) \leq \delta - \varepsilon \log(|z|/R) \quad \forall z \in \Omega
\]

Sending \(\varepsilon \to 0 \) and then \(\delta \to 0 \) shows that \(v \leq 0 \) on \(\Omega \) as claimed.

Now let us make another observation concerning any \(u \) harmonic and bounded on \(\mathbb{C} \setminus K \) with \(K \) compact: for any \(R > 0 \) with \(K \subset \{ |z| < R \} \) we have

\[
\int_{|z|=R} \frac{\partial u}{\partial n} d\sigma = 0 \quad \text{(10.1)}
\]

Indeed, \(v(z) = u(1/z) \) is bounded and harmonic on \(0 < |z| < \frac{1}{R} + \varepsilon \) for some \(\varepsilon > 0 \). By Problem 29, \(v \) is necessarily harmonic on a neighborhood of zero. Hence,

\[
0 = \iint_{|z| \leq \frac{1}{R}} \Delta v \, dx \, dy = \iint_{|z|=\frac{1}{R}} \frac{\partial v}{\partial n} d\sigma
\]

and (10.1) follows. An analogous result holds on any parabolic Riemann surface, but the previous proof in \(\mathbb{C} \) does not generalize to that setting. Let us give one that does generalize: Without loss of generality \(K \subset \mathbb{D} \). For any \(R > 1 \) denote by \(\omega_R \) the harmonic function so that \(\omega = 1 \) on \(\{|z| = 1\} \) and \(\omega = 0 \) on \(\{|z| = R\} \) (harmonic measure). This exists of course by Perron but we even have an explicit formula:

\[
\omega(z) = \frac{\log(\frac{R}{|z|})}{\log R}, \quad 1 \leq |z| \leq R
\]

Then, by Stokes’ theorem,

\[
0 = \oint_{|z|=1} \frac{\partial u}{\partial r} d\sigma + \oint_{|z|=R} u \frac{\partial \omega}{\partial r} d\sigma - \oint_{|z|=1} u \frac{\partial \omega}{\partial r} d\sigma
\]
CHAPTER 10. UNIFORMIZATION I

Since $\frac{\partial \omega}{\partial r} = -\frac{1}{r \log R}$, it follows upon sending $R \to \infty$ that

$$0 = \oint_{|z|=1} \frac{\partial u}{\partial r} \, d\sigma$$

as desired. This proof can be made to work on a general parabolic Riemann surface and we obtain the following result.

Lemma 10.3. Let D be a parametric disk on a parabolic surface M and suppose u is harmonic and bounded on $M \setminus D$. If $u \in C^1(M \setminus \tilde{D})$, then

$$\int_{\partial D} \ast du = 0$$

Proof. We say that $N \subset M$ is admissible if \tilde{N} is compact, $\tilde{D} \subset N$, and ∂N is piecewise C^2. Then by ω_N we mean the harmonic function on $N \setminus \tilde{D}$ so that $\omega = 1$ on ∂D and $\omega = 0$ on ∂N. We claim that

$$\mathcal{F} := \{ \omega_N \mid N \text{ admissible} \}$$

is a Perron family on $M \setminus \tilde{D}$ where we set each $\omega_N = 0$ on $M \setminus N$. In this way, each ω_N becomes subharmonic on $M \setminus \tilde{D}$. To verify that \mathcal{F} is a Perron family, observe that from the maximum principle,

$$\max\{\omega_{N_1}, \omega_{N_2}\} \leq \omega_{N_1 \cup N_2}$$

$$(\omega_N)_K \leq \omega_{N \cup K}$$

where $K \subset M \setminus \tilde{D}$ is any parametric disk in the second line. Since $N_1 \cup N_2$ and $N \cup K$ are again admissible, \mathcal{F} is indeed such a family and

$$\omega_\infty := \sup_{v \in \mathcal{F}} v$$

is harmonic on $M \setminus D$ with $0 \leq \omega_\infty \leq 1$ and $\omega_\infty = 1$ on ∂D. Apply the maximum principle for parabolic surfaces as given by Proposition 10.2 to $1 - \omega_\infty$ yields $\omega_\infty = 1$ everywhere on $M \setminus D$.

Returning to any admissible N as above, we infer from Stokes theorem that

$$0 = \int_{\partial (N \setminus \tilde{D})} \omega_N \ast du - u \ast d\omega_N$$

or, with suitable orientations,

$$\int_{\partial D} \ast du = -\int_{\partial N} u \ast d\omega_N + \int_{\partial D} u \ast d\omega_N$$

(10.2)

It is clear that $\ast d\omega_N$ is of definite sign on both ∂D and ∂N. Indeed, on these boundaries this differential form, evaluated at a tangent vector \vec{e} to the
boundary, is the directional derivative of ω_N along e^\perp (with a fixed sense of orientation along the boundary). Furthermore, again by Stokes,

$$\int_{\partial D} *d\omega_N = \int_{\partial N} *d\omega_N$$

In view of (10.2) and the boundedness of u it therefore suffices to show that

$$\inf_{N \text{ admissible}} \left| \int_{\partial D} *d\omega_N \right| = 0$$

However, this follows immediately from the fact that $\omega_\infty = 1$ everywhere on $M \setminus D$. □
Chapter 11

Problems

1. (a) Let \(a, b \in \mathbb{C} \) and \(k > 0 \). Describe the set of points \(z \in \mathbb{C} \) which satisfy
\[
|z - a| + |z - b| \leq k.
\]
(b) Let \(|a| < 1, a \in \mathbb{C}\). The plane \(\{z \in \mathbb{C}\} \) is divided into three subsets according to whether
\[
w = \frac{z - a}{1 - \bar{a}z}
\]
satisfies \(|w| < 1, |w| = 1, \) or \(|w| > 1\). Describe these sets (in terms of \(z \)).

2. Let \(P(z) = \sum_{j=0}^{n} a_j z^j \) be a polynomial of degree \(n \geq 1 \) with all roots inside the unit circle \(|z| < 1 \). Define \(P^*(z) = z^n \bar{P}(z^{-1}) \) where \(\bar{P}(z) = \sum_{j=0}^{n} \bar{a}_j z^j \). Show that all roots of
\[
P(z) + P^*(z) = 0
\]
lie on the unit circle \(|z| = 1 \). Do the same for \(P(z) + e^{i\theta} P^*(z) = 0 \), with \(\theta \in \mathbb{R} \) arbitrary.

3. Suppose \(p_0 > p_1 > p_2 > \cdots > p_n > 0 \). Prove that all zeros of the polynomial \(P(z) = \sum_{j=0}^{n} p_j z^j \) lie in \(\{|z| > 1\} \).

4. Let \(\Phi : S^2 \to \mathbb{C}_\infty \) be the stereographic projection \((x_1, x_2, x_3) \mapsto \frac{x_1+ix_2}{1-x_3} \).
(a) Give a detailed proof that \(\Phi \) is conformal. (b) Define a metric \(d(z, w) \) on \(\mathbb{C}_\infty \) as the Euclidean distance of \(\Phi^{-1}(z) \) and \(\Phi^{-1}(w) \) in \(\mathbb{R}^3 \). Find a formula for \(d(z, \infty) \). (c) Show that circles on \(S^2 \) go to circles or lines in \(\mathbb{C} \) under \(\Phi \).

5. Find a Möbius transformation that takes \(|z - i| < 1 \) onto \(|z - 2| < 3 \). Do the same for \(|z + i| < 2 \) onto \(x + y \geq 2 \). Is there a Möbius transformation that takes
\[
\{|z-i| < 1\} \cap \{|z-1| < 1\}
\]
ono onto the first quadrant? How about \(\{|z-2i| < 2\} \cap \{|z-1| < 1\} \) and \(\{|z-\sqrt{3}| < 2\} \cap \{|z+\sqrt{3}| < 2\} \) onto the first quadrant?
6. Let \(\{z_j\}_{j=1}^n \subset \mathbb{C} \) be distinct points and \(m_j > 0 \) for \(1 \leq j \leq n \). Assume \(\sum_{j=1}^n m_j = 1 \) and define \(z = \sum_{j=1}^n m_j z_j \). Prove that every line \(\ell \) through \(z \) separates the points \(\{z_j\}_{j=1}^n \) unless all of them are co-linear. Here separate means that there are points from \(\{z_j\}_{j=1}^n \) on both sides of the line \(\ell \) (without being on \(\ell \)).

7. (a) Suppose \(\{z_j\}_{j=1}^\infty \subset \{z \in \mathbb{C} : \text{Re } z \geq 0\} \) is a given sequence. True or false: if both \(\sum_{j=1}^\infty z_j \) and \(\sum_{j=1}^\infty z_j^2 \) converge, then \(\sum_{j=1}^\infty |z_j|^2 \) also converges.

(b) True or false: there are sequences of complex numbers \(\{z_j\}_{j=1}^\infty \) such that for each integer \(k \geq 1 \) the infinite series \(\sum_{j=1}^\infty z_j^k \) converges, but fails to converge absolutely.

8. Find the holomorphic function \(f(z) = f(x + iy) \) with real part

\[
\frac{x(1 + x^2 + y^2)}{1 + 2x^2 - 2y^2 + (x^2 + y^2)^2}
\]

and so that \(f(0) = 0 \).

9. Discuss the mapping properties of \(z \mapsto w = \frac{1}{2}(z + z^{-1}) \) on \(|z| < 1 \). Is it one-to-one there? What is the image of \(|z| < 1 \) in the \(w \)-plane? What happens on \(|z| = 1 \) and \(|z| > 1 \)? What is the image of the circles \(|z| = r < 1 \), and of the half rays \(\text{Arg } z = \theta \) emanating from zero?

10. Let \(T(z) = \frac{az + b}{cz + d} \) be a Möbius transformation. (a) Show that \(T(\mathbb{R}_\infty) = \mathbb{R}_\infty \) iff we can choose \(a, b, c, d \in \mathbb{R} \). (b) Find all \(T \) such that \(T(\mathbb{T}) = \mathbb{T} \) where \(\mathbb{T} = \{ |z| = 1 \} \) is the unit circle. (c) Find all \(T \) for which \(T(D) = D \) where \(D = \{ |z| < 1 \} \) is the unit disk.

11. Let \(f \in \mathcal{H}(\mathbb{D}) \) with \(|f(z)| < 1 \) for all \(z \in \mathbb{D} \).

a) If \(f(0) = 0 \), show that \(|f(z)| \leq |z| \) on \(\mathbb{D} \) and \(|f'(0)| \leq 1 \). If \(|f(z)| = |z| \) for some \(z \neq 0 \), or if \(|f'(0)| = 1 \), then \(f \) is a rotation.

b) Without any assumption on \(f(0) \), prove that

\[
\left| \frac{f(z_1) - f(z_2)}{1 - f(z_1)f(z_2)} \right| \leq \frac{|z_1 - z_2|}{|1 -
\overline{z}_1 z_2|} \quad \forall \ z_1, z_2 \in \mathbb{D} \tag{11.1}
\]

and

\[
\frac{|f(z)|}{1 - |f(z)|^2} \leq \frac{1}{1 - |z|^2} \quad \forall \ z \in \mathbb{D} \tag{11.2}
\]

Show that equality in (11.1) for some pair \(z_1 \neq z_2 \) or in (11.2) for some \(z \in \mathbb{D} \) implies that \(f(z) \) is a fractional linear transformation.

12. a) Let \(f \in \mathcal{H}(\Omega) \) be one-to-one. Show that necessarily \(f'(z) \neq 0 \) everywhere in \(\Omega \), that \(f(\Omega) \) is open (do you need one-to-one for this? If not, what do you need?), and that \(f^{-1} : f(\Omega) \to \Omega \) is also holomorphic. Such
a map is called a \textit{bi-holomorphic} map between the open sets Ω and $f(\Omega)$. If $f(\Omega) = \Omega$, then one also refers to them as \textit{automorphisms}.

b) Determine all automorphisms of \mathbb{D}, \mathbb{H}, and \mathbb{C}.

13. Endow \mathbb{H} with the metric
\[ds^2 = \frac{1}{y^2} (dx^2 + dy^2) = \frac{1}{(\text{Im } z)^2} dz d\bar{z} \]
and \mathbb{D} with the metric
\[ds^2 = \frac{4}{(1 - |z|^2)^2} dz d\bar{z} \]
These Riemannian manifolds, which turn out to be isometric, are known as \textit{hyperbolic space}. By definition, for any two Riemannian manifolds M, N a map $f : M \to N$ is called an \textit{isometry} if it is a one-to-one, onto, and preserves the metric.

(a) The distance between any two points z_1, z_2 in hyperbolic space (on either \mathbb{D} or \mathbb{H}) is defined as
\[d(z_1, z_2) = \inf_{\gamma} \int_0^1 \| \dot{\gamma}(t) \| \, dt \]
where the infimum is taken over all curves joining z_1 and z_2 and the length of $\dot{\gamma}$ is determined by the hyperbolic metric ds. Show that any holomorphic $f : \mathbb{D} \to \mathbb{D}$ or holomorphic $f : \mathbb{H} \to \mathbb{H}$ satisfies
\[d(f(z_1), f(z_2)) \leq d(z_1, z_2) \]
for all z_1, z_2 in hyperbolic space.

(b) Determine all isometries of \mathbb{H} to itself, \mathbb{D} to itself, as well as from \mathbb{H} to \mathbb{D}.

(c) Determine all geodesics of hyperbolic space as well as its curvature.

14. Let $f \in \mathcal{H}(\mathbb{D})$ be such that $\text{Re } f(z) > 0$ for all $z \in \mathbb{D}$, and $f(0) = a > 0$. Prove that $|f'(0)| \leq 2a$. Is this inequality sharp? If so, which functions attain it?

15. Prove Goursat’s theorem: if f is complex differentiable in Ω (but without assuming that f' is continuous), then $f \in \mathcal{H}(\Omega)$.

16. (a) Suppose $f \in \mathcal{H}(\mathbb{D})$ satisfies $|f(z)| \leq M$ for all $z \in \mathbb{D}$. Assume further that $f(z)$ vanishes at the points $\{z_j\}_{j=1}^N$ where $1 \leq N \leq \infty$. Prove that
\[|f(z)| \leq M \left| \prod_{j=1}^m \frac{z - z_j}{1 - \bar{z}_j z} \right| \quad \forall \ z \in \mathbb{D} \]
for any $1 \leq m \leq N$ (or, if $N = \infty$, then $1 \leq m < N$).
(b) If \(N = \infty \) and \(f \neq 0 \), then show that

\[
\sum_{j=1}^{\infty} (1 - |z_j|) < \infty
\]

17. Let \(z_1, z_2, \ldots, z_n \in \mathbb{C} \) be distinct points. Suppose \(\gamma \) is a closed (large) circle that contains these points in its interior and let \(f \) be analytic on a disk containing \(\gamma \). Then the unique polynomial \(P(z) \) of degree \(n - 1 \) which satisfies \(P(z_j) = f(z_j) \) for all \(1 \leq j \leq n \) is given by

\[
P(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta) \omega(\zeta) - \omega(z)}{\zeta - z} d\zeta
\]

provided \(\omega(z) \) is a suitably chosen polynomial. Find \(\omega \) and prove this formula.

18. In this exercise you are asked to use the residue theorem, Theorem 2.9 to evaluate several integrals.

First, compute the value of the following definite integrals.

\[
\int_{-\infty}^{\infty} \frac{dx}{1 + x^2} = ?, \quad \int_{-\infty}^{\infty} \frac{dx}{1 + x^4} = ?, \quad \int_{-\infty}^{\infty} \frac{x^2 dx}{1 + x^4} = ?
\]
\[
\int_{0}^{\infty} \frac{\sin x}{x} dx = ?, \quad \int_{0}^{\infty} \frac{1 - \cos x}{x^2} dx = ?
\]
\[
\int_{0}^{\pi} \frac{d\theta}{(a + \cos \theta)^2} = ? \quad \text{if} \quad a > 1, \quad \int_{0}^{\infty} \frac{\log x}{1 + x^2} = ?, \quad \int_{0}^{\infty} \frac{(\log x)^3}{1 + x^2} dx = ?
\]

Second, prove that

\[
\int_{0}^{\infty} \frac{x^{a-1}}{1 + x} dx = \int_{-\infty}^{\infty} \frac{e^{at}}{1 + e^t} dt = \frac{\pi}{\sin \pi a}, \quad 0 < a < 1
\]
\[
\int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi} dx = e^{-\pi \xi^2} \quad \forall \xi \in \mathbb{R}
\]
\[
\int_{-\infty}^{\infty} e^{-2\pi i x \xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} dx = \frac{2 \sinh 2\pi a \xi}{\sinh 2\pi \xi} \quad \forall \xi \in \mathbb{R}, \quad 0 < a < 1
\]
\[
\int_{-\infty}^{\infty} \cos x \frac{x}{x^2 + a^2} dx = \frac{\pi e^{-a}}{a}, \quad \int_{-\infty}^{\infty} \sin x \frac{x}{x^2 + a^2} dx = \pi e^{-a}, \quad a > 0
\]
\[
\int_{-\infty}^{\infty} e^{-2\pi i x \xi} \frac{1}{(1 + x^2)^2} dx = \frac{\pi}{2} (1 + 2\pi |\xi|) e^{-2\pi |\xi|}, \quad \forall \xi \in \mathbb{R}
\]
as well as
\[
\int_{-\infty}^{\infty} \frac{dx}{(1 + x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \pi
\]
\[
\int_{0}^{2\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{2\pi a}{(a^2 - 1)^{3/2}}, \quad a > 1
\]
\[
\int_{0}^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}, \quad a, b \in \mathbb{R}, \ |a| > b
\]
and finally, show that
\[
\int_{0}^{2\pi} \log |1 - ae^{i\theta}| \, d\theta = 0, \quad \int_{0}^{\infty} \frac{\log x}{x^2 + a^2} \, dx = \frac{\pi}{2a} \log a, \quad a > 0
\]
\[
\int_{0}^{1} \log(\sin \pi x) \, dx = -\log 2
\]
\[
\sum_{n=-\infty}^{\infty} \frac{1}{(u + n)^2} = \frac{\pi^2}{(\sin \pi u)^2}, \quad \text{Hint: use } f(z) = \frac{\pi \cot \pi z}{(u + z)^2}
\]
\[
\int_{0}^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 - 1}}
\]
19. a) Prove that
\[
\int_{0}^{\pi} \frac{x \, d\theta}{x^2 + \sin^2 \theta} = \frac{\pi}{2\sqrt{1 + x^2}} \quad \forall \ x > 0
\]
b) Prove that
\[
\int_{0}^{2\pi} \frac{(1 + 2 \cos \theta)^n \cos(n\theta)}{1 - r - 2r \cos \theta} \, d\theta = \frac{2\pi}{\sqrt{1 - 2r - 3r^2}} \left(\frac{1 - \sqrt{1 - 2r - 3r^2}}{2r^2} \right)^n
\]
for any \(-1 < r < \frac{1}{3}\), \(n = 0, 1, 2, \ldots\).
20. a) Let \(\Omega\) be an open set in \(\mathbb{H}\) and denote \(\Omega_0 = \Omega \cap \mathbb{H}\). Suppose \(f \in \mathcal{H}(\Omega_0) \cap C(\Omega)\) with \(\text{Im} \ f(z) = 0\) for all \(z \in \Omega \cap \partial \mathbb{H}\). Define
\[
F(z) := \begin{cases}
 f(z) & z \in \Omega \\
 \bar{f}(\bar{z}) & z \in \Omega^-
\end{cases}
\]
where \(\Omega^- = \{ z : \bar{z} \in \Omega \}\). Prove that \(F \in \mathcal{H}(\Omega \cup \Omega^-)\).
b) Suppose \(f \in \mathcal{H}(\mathbb{D}) \cap C(\bar{\mathbb{D}})\) so that \(|f(z)| = 1\) on \(|z| = 1\). If \(f\) does not vanish anywhere in \(\mathbb{D}\), then prove that \(f\) is constant.
21. (a) Is there a bi-holomorphic map between the punctured disk \(\{ 0 < |z| < 1 \}\) and the annulus \(\{ \frac{1}{2} < |z| < 1 \}\)? If “yes”, then find it, if “no”, then prove that it cannot exist.
(b) Prove that \(\mathbb{C}\) is not conformally equivalent to any proper subdomain of itself.
22. Let \(f(z) = \sinh(\pi z) \) and
\[
\Omega_0 = \{ z \in \mathbb{C} : \text{Re} \, z > 0, -\frac{1}{2} < \text{Im} \, z < \frac{1}{2} \}
\]
as well as \(\Omega_1 = -i\mathbb{H} \) (the right half-plane). Prove that \(f : \Omega_0 \to \Omega_1 \) is
one-to-one, onto, and bi-holomorphic.

23. Let \(\lambda > 1 \). Show that the equation \(\lambda - e^{-z} - z = 0 \) has a unique zero in
the closed right half-plane \(\text{Re} \, z \geq 0 \).

24. (a) Give the partial fraction expansion of
\[
r(z) = \frac{z^2 + 1}{(z^2 + z + 1)(z - 1)^2}.
\]
(b) Let \(f(z) = \frac{1}{(z - 1)(z - 2)} \). Find the Laurent expansion of \(f \) on each of
the following three annuli:
\[
\mathcal{A}_1 = \{ 0 < |z| < 1 \}, \quad \mathcal{A}_2 = \{ 1 < |z| < 2 \}, \quad \mathcal{A}_3 = \{ 2 < |z| < \infty \}
\]

25. This exercise introduces and discusses some basic properties of the Gamma
function \(\Gamma(z) \), which is of fundamental importance in mathematics:
(a) Show that
\[
\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} \, dt \tag{11.3}
\]
defines an analytic function in the half-plane \(\text{Re} \, z > 0 \) (you can use Morera's theorem, for example, provided you justify your calculations). Also, verify the functional equation \(\Gamma(z+1) = z\Gamma(z) \) for all \(\text{Re} \, z > 0 \) as well as
the identity \(\Gamma(n+1) = n! \) for all integers \(n \geq 0 \).

(b) Using the functional equation, show that there exists a unique meromorphic function on \(\mathbb{C} \) which agrees with \(\Gamma(z) \) on the right half-plane. Denoting this globally defined function again by \(\Gamma \), prove that it has poles
exactly at the nonpositive integers \(-n \) with \(n \geq 0 \). Moreover, show that
these poles are simple with residues \(\text{Res}(\Gamma, -n) = \frac{(-1)^n}{n!} \) for all \(n \geq 0 \).

(c) With \(\Gamma \) as in (a), verify the identity
\[
\Gamma(z) = \int_1^\infty e^{-t} t^{z-1} \, dt + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)} \tag{11.4}
\]
for all \(\text{Re} \, z > 0 \). Now repeat part (b) using (11.4) instead of the functional
equation.

(d) Verify that
\[
\int_0^\infty \frac{v^{a-1}}{1+v} \, dv = \frac{\pi}{\sin \pi a}, \quad \forall \ 0 < \text{Re} \, a < 1 \tag{11.5}
\]
Now apply this to establish that
\[
\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} \tag{11.6}
\]
as an identity between meromorphic functions defined on \(\mathbb{C} \). In particular, we see that \(\Gamma(\frac{3}{2}) = \sqrt{\pi} \). Find an expression for \(|\Gamma(\frac{1}{2} + it)|\) with \(t \in \mathbb{R} \).

To pass from (11.5) to (11.6) use the identity

\[
\Gamma(1 - x) = y^{1-x} \int_{0}^{\infty} e^{-uy} u^{-x} \, du, \quad \forall \, y > 0
\]

which holds for any \(0 < x < 1 \).

(e) Check that

\[
\int_{0}^{1} (1 - t)^{\alpha-1} t^{\beta-1} \, dt = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}, \quad \forall \, \Re(\alpha) > 0, \Re(\beta) > 0
\]

(f) Prove that

\[
\int_{0}^{\infty} t^{z-1} \cos t \, dt = \Gamma(z) \cos(\pi z/2), \quad \forall \, 0 < \Re z < 1
\]

\[
\int_{0}^{\infty} t^{z-1} \sin t \, dt = \Gamma(z) \sin(\pi z/2), \quad \forall \, -1 < \Re z < 1
\]

Deduce from this that

\[
\int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}, \quad \int_{0}^{\infty} \frac{\sin x}{x^{3/2}} \, dx = \sqrt{2\pi}
\]

(g) Let \(\gamma \) be a version of Hankel’s loop contour. This refers to a smooth curve \(\gamma = \gamma(t) : \mathbb{R} \to \mathbb{C} \setminus (-\infty, 0] \) which approaches \((-\infty, 0]\) from above as \(t \to \infty \) and from below as \(t \to -\infty \). Moreover, it encircles \(w = 0 \) once in a positive sense. An example of such a \(\gamma \) would be with \(\varepsilon : \mathbb{R} \to (0, 1) \), \(\varepsilon(t) \to 0 \) as \(|t| \to \infty \), \(\gamma(t) = t - i\varepsilon(t) \) for \(-\infty < t < -1 \) and \(\gamma(t) = -t + i\varepsilon(t) \) for \(1 < t < \infty \) as well as a circular arc \(\gamma(t) \) for \(-1 \leq t \leq 1 \) encircling \(w = 0 \) in a positive sense and joining the point \(-1 - i\varepsilon(-1)\) to the point \(-1 + i\varepsilon(1)\).

Now prove that for all \(z \in \mathbb{C} \)

\[
\frac{1}{2\pi i} \int_{\gamma} e^{w^{-z}} \, dw = \frac{1}{\Gamma(z)}
\]

as an identity between entire functions. On the left-hand side \(w^{-z} = e^{-z \Log w} \) where \(\Log w \) is the principal branch of the logarithm.

26. This exercise introduces and studies Bessel functions \(J_n(z) \) with \(n \in \mathbb{Z} \), \(z \in \mathbb{C} \): they are defined as the coefficients in the Laurent expansion

\[
\exp \left(\frac{z}{2} (\zeta - \zeta^{-1}) \right) = \sum_{n=-\infty}^{\infty} J_n(z) \zeta^n, \quad 0 < |\zeta| < \infty
\]
(a) Show from the generating function (11.8) that for each \(n \in \mathbb{Z} \) the function \(J_n(z) \) is entire and satisfies

\[
J_n(z) = \frac{1}{\pi} \int_0^\pi \cos(n\theta - z \sin \theta) \, d\theta
\]

(11.9)
as an identity between entire functions. Also, prove that \(J_{-n} = (-1)^n J_n \).

(b) Using (11.9) prove that for each \(n \in \mathbb{Z} \), \(w = J_n(z) \) satisfies Bessel’s equation

\[
z^2 w''(z) + zw'(z) + (z^2 - n^2)w(z) = 0
\]

(11.10)
This equation, which arises frequently in both mathematics and physics (as well as other applications), is the reason why Bessel functions are so important.

In what follows, \(\mathbb{C}^* := \mathbb{C} \setminus \{0\} \). Also, for the remainder of (b) we allow \(n = \nu \in \mathbb{C} \) arbitrary there exists a unique function \(w(z) \) defined and analytic locally around \(z = z_0 \) with the property that \(w(z_0) = w_0 \), \(w'(z_0) = w_1 \) and so that (11.10) holds on the domain of \(w \) (use power series around \(z = z_0 \)). We refer to such a solution as a local solution around \(z_0 \). What happens at \(z_0 = 0 \)? Show that any local solution around an arbitrary \(z_0 \in \mathbb{C}^* \) can be analytically continued to any simply connected domain \(\Omega \subset \mathbb{C}^* \) containing \(z_0 \). Moreover, show that for any simply connected domain \(\Omega \subset \mathbb{C}^* \) there exist two linearly independent solutions \(W_0, W_1 \in H(\Omega) \) of (11.10) so that any local solution \(w \) around an arbitrary \(z_0 \in \Omega \) is a linear combination of \(W_0, W_1 \) (such a pair is referred to as a fundamental system of solutions on \(\Omega \)).

Given a local solution \(w(z) \) around an arbitrary \(z_0 \in \mathbb{C}^* \), set \(f(\zeta) = w(e^{\zeta}) \) which is defined and analytic around any \(\zeta_0 \) with \(e^{\zeta_0} = z_0 \). Derive a differential equation for \(f \) and use it to argue that \(f \) can be analytically continued to an entire function (in the language of Riemann surfaces this shows that \(e^{\zeta} \) uniformizes the Riemann surface of any local solution of Bessel’s equation; loosely speaking, the “worst” singularity that a solution of Bessel’s equation can have at \(z = 0 \) is logarithmic).

(c) Using either (11.8) or (11.9) prove that the power series expansion of \(J_n(z) \) around zero is

\[
J_n(z) = (z/2)^n \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k}}{k!(n+k)!}
\]

(11.11)
provided \(n \geq 0 \). What is the power series of \(J_n \) for \(n < 0 \)?

(d) Suppose the formal power series \(w_n(z) = \sum_{k=0}^{\infty} a_{k,n} z^k \) satisfies the ordinary differential equation (11.10) with some fixed integer \(n \geq 0 \). Derive a recursion relation for the coefficients \(a_{k,n} \) and show that up to a multiplicative constant the formal power series equals (11.11), i.e., \(w_n \) is
a multiple of J_n. In particular, J_n is the only solution of (11.10) (up to multiples) which is analytic around $z = 0$.

(e) Find a fundamental system of solutions of Bessel’s equation (11.10) with $n = 0$ on $G = \mathbb{C} \setminus (-\infty, 0]$ (it will help if you remember from (b) that the worst singularity at $z = 0$ of any solution of (11.10) is logarithmic). Of course you need to justify your answer. What about general $n \geq 0$?

(f) We now use (11.11) to define J_ν for $\nu \in \mathbb{C}$ by the formula

$$J_\nu(z) = (z/2)^\nu \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k}}{k! \Gamma(\nu + k + 1)}$$

(11.12)

where we select the principal branch of $z^\nu = e^{\nu \log z}$ for definiteness. Hence, we view (11.12) as an element of $\mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Check that

$$J_{\frac{1}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \sin z$$
$$J_{\frac{3}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \left(\frac{\sin z}{z} - \cos z\right)$$

Show that (11.12) agrees with the previous definition for all integer ν, including negative ones. Argue that J_ν thus defined solves (11.10) with n replaced by $\nu \in \mathbb{C}$, and prove that this property fails if we were to define J_ν by replacing n with $\nu \in \mathbb{C}$ in (11.9) (which explains why we used the power-series instead). It is worth noting that for any $\nu \in \mathbb{C}$, the function $J_\nu(e^\zeta)$ is entire in ζ (why?). This is in agreement with our ”abstract” result from part (b).

(g) Prove that for all $\nu \in \mathbb{C}$ with $\text{Re} \, \nu > -\frac{1}{2}$ there is the representation

$$J_\nu(z) = \frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \int_{-1}^{1} e^{\nu t} (1 - t^2)^{\nu - \frac{1}{2}} dt$$
$$= \frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \int_{0}^{\pi} \cos(\nu \cos \theta) \sin^{2\nu} \theta \, d\theta$$

Check directly that these integral representations satisfy the Bessel equation (11.10) with $n = \nu$.

(h) Using (11.12) show that for any $\nu \in \mathbb{C}$

$$J_\nu(z) = \frac{(z/2)^\nu}{2\pi i} \int_{\gamma} \exp\left(\frac{w - z^2}{4w}\right) \frac{dw}{w^{\nu+1}}$$
$$= \frac{1}{2\pi i} \int_{\gamma} \exp\left(\frac{z}{2}(\zeta - \zeta^{-1})\right) \frac{d\zeta}{\zeta^{\nu+1}}$$

(11.13)

where γ is a Hankel contour (see (11.7)). In both cases the powers involving ν are principal branches. (11.13) should of course remind you of
our starting point (11.8). Indeed, check that for \(\nu = n \in \mathbb{Z} \) the representation (11.13) is nothing but the integral computing the \(n \)-th Laurent coefficient of (11.8). Note that the power \(\zeta^{\nu+1} \) in the denominator is single-valued if and only if \(\nu \in \mathbb{Z} \).

Finally, deduce from (11.13) that

\[
J_\nu(z) = \frac{1}{2\pi i} \int_{\gamma} e^{z \sinh \tau - \nu \tau} d\tau
\]

(11.14)

where \(\tilde{\gamma} = \text{Log} \gamma \) is the (principal) logarithm of a Hankel contour \(\gamma \) (draw a picture of such a contour!).

(i) Use (11.14) to prove the recursion relation of the Bessel functions

\[
J_{\nu-1}(z) + J_{\nu+1}(z) = (2\nu/z)J_\nu(z)
\]

and from these that

\[
J_{\nu+1}(z) = (\nu/z)J_\nu(z) - J'_\nu(z)
\]

\[
J_{\nu-1}(z) = (\nu/z)J_\nu(z) + J'_\nu(z)
\]

In particular, \(J'_0(z) = -J_1(z) \).

27. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) have radius of convergence \(R = 1 \). Problems (a)-(c) further explore the connection between the behavior of the series and the function \(f \) at the boundary. They are completely elementary but a bit tricky.

(a) Suppose \(a_n \in \mathbb{R} \) for all \(n \geq 0 \) and \(s_n = a_0 + a_1 + \ldots + a_n \to \infty \) as \(n \to \infty \). Prove that \(f(z) \) cannot be analytically continued to any neighborhood of \(z = 1 \). Is it meaningful to call \(z = 1 \) a pole of \(f \)? Does the same conclusion hold if all \(a_n \) are real and \(|s_n| \to \infty \) as \(n \to \infty \)?

(b) Suppose \(\sum_{n=0}^{\infty} a_n = s \). Show that then \(f(z) \to s \) as \(z \to 1 \) inside the region \(z \in K_\alpha \cap D, 0 < \alpha \leq \pi \) arbitrary but fixed. Here \(K_\alpha \) is a cone with tip at \(z = 1 \), symmetric about the \(x \)-axis, opening angle \(\alpha \), and with \((-\infty, 1) \subset K_\alpha \) (this type of convergence \(z \to 1 \) is called \(\text{”non-tangential convergence”} \)). Note that \(z = 1 \) can be replaced by any \(z \in \partial D \).

(c) Now assume that \(na_n \to 0 \) as \(n \to \infty \). If \(f(z) \to s \) as \(z \to 1 \) non-tangentially, then prove that \(\sum_{n=0}^{\infty} a_n = s \). Note again that \(z = 1 \) can be replaced by any \(z \in \partial D \).

28. Suppose that \(f(z) = \sum_{n=0}^{\infty} a_n z^{2n} \) has radius of convergence \(R = 1 \). Prove that \(f \) cannot be analytically continued to any disk centered at any point \(z_0 \) with \(|z_0| = 1 \) (assume that you can analytically continue to a neighborhood of \(z = 1 \) and substitute \(z = a w^2 + b w^3 \) where \(0 < a < 1 \) and \(a + b = 1 \)).

Generalize to other gap series \(\sum_{k=0}^{\infty} a_k z^{n_k} \) where \(n_{k+1} > \lambda n_k \) for all \(k \geq 1 \) with \(\lambda > 1 \) fixed.
29. It is natural to ask whether there is an analogue of Theorem 3.12 for measures \(\mu \in \mathcal{M}(\mathbb{T}) \). Prove the following:

(a) If \(\mu \in \mathcal{M}(\mathbb{T}) \) is singular with respect to Lebesgue measure \((\mu \perp d\theta)\), then for a.e. \(x \in \mathbb{T} \) (with respect to Lebesgue measure)

\[
\frac{\mu([x-\varepsilon,x+\varepsilon])}{\varepsilon} \to 0 \text{ as } \varepsilon \to 0
\]

(b) Let \(\{\Phi_n\}_{n=1}^{\infty} \) satisfy A1)–A4) from Chapter 3, and assume that the kernels \(\{\Psi_n\}_{n=1}^{\infty} \) from Definition 3.10 also satisfy

\[
\sup_{|\theta| < \frac{\delta}{2}} |\Psi_n(\theta)| \to 0 \text{ as } n \to \infty \tag{11.15}
\]

for all \(\delta > 0 \). Under these assumptions show that for any \(\mu \in \mathcal{M}(\mathbb{T}) \)

\[
\Phi_n * \mu \to f \text{ a.e. as } n \to \infty
\]

where \(d\mu = fd\theta + d\nu_s \) is the Lebesgue decomposition, i.e., \(f \in L^1(\mathbb{T}) \) and \(d\nu_s \perp d\theta \).

30. This exercise continues our investigation of the important Gamma function.

(a) Prove that there is some constant \(A \in \mathbb{C} \) such that

\[
\frac{\Gamma'(z)}{\Gamma(z)} = \int_0^1 \left(1 - (1-t)^{z-1} \right) \frac{dt}{t} + A \quad \forall \Re z > 0 \tag{11.16}
\]

Deduce from (11.16) that

\[
\frac{\Gamma'(z)}{\Gamma(z)} = \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+z} \right) + A \tag{11.17}
\]

as an identity between meromorphic functions on \(\mathbb{C} \).

(b) Derive the following product expansion from (11.17):

\[
\frac{1}{\Gamma(z)} = e^{\gamma z} z \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}} \tag{11.18}
\]

as an identity between entire functions. Here \(\gamma \) is the Euler constant

\[
\gamma = \lim_{N \to \infty} \left(1 + \frac{1}{2} + \ldots + \frac{1}{N} - \log N \right)
\]

(c) Prove Gauss’ formula: if \(z \in \mathbb{C} \setminus \mathbb{Z}_0^- \), then

\[
\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1)(z+2)\ldots(z+n)}
\]
31. This exercise revisits fractional linear transformations.

(a) Prove that
\[G = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{C}, \ |a|^2 - |b|^2 = 1 \right\} \]
is a subgroup of \(SL(2, \mathbb{C}) \) (it is known as \(SU(1, 1) \)). Establish the group isomorphism \(G/\{\pm I\} \cong \text{Aut}(\mathbb{D}) \) in two ways: (i) by showing that each element of \(G \) defines a fractional linear transformation which maps \(\mathbb{D} \) onto \(\mathbb{D} \); and conversely, that every such fractional linear transformation arises in this way uniquely up to the signs of \(a, b \). (ii) By showing that the map
\[e^{2i\theta} \frac{z - z_0}{1 - z_0 \bar{z}} \mapsto \begin{bmatrix} \frac{e^{i\theta}}{\sqrt{1 - |z_0|^2}} & -\frac{z_0 e^{i\theta}}{\sqrt{1 - |z_0|^2}} \\ -\frac{\bar{z}_0 e^{-i\theta}}{\sqrt{1 - |z_0|^2}} & \frac{e^{-i\theta}}{\sqrt{1 - |z_0|^2}} \end{bmatrix} \quad (11.19) \]
leads to an explicit isomorphism.

(b) We know from a previous problem that \(\text{Aut}(\mathbb{C}_\infty) \) is the group of all fractional linear transformations, i.e.,
\[\text{Aut}(\mathbb{C}_\infty) = PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm \text{Id}\} \]
and that each such transformation induces a conformal homeomorphism of \(S^2 \) (indeed, the stereographic projection is conformal). The purpose of this exercise is to identify the subgroup \(G_{\text{rig}} \) of those transformations in \(\text{Aut}(\mathbb{C}_\infty) \) which are isometries (in other words, rigid motions) of \(S^2 \) (viewing \(\mathbb{C}_\infty \) as the Riemann sphere \(S^2 \)). Prove that
\[G_{\text{rig}} \cong SO(3) \cong SU(2)/\{\pm I\} \]
where
\[SU(2) = \left\{ \begin{bmatrix} a & -\bar{b} \\ b & a \end{bmatrix} : a, b \in \mathbb{C}, \ |a|^2 + |b|^2 = 1 \right\} \]
Find the fractional linear transformation which corresponds to a rotation of \(S^2 \) of angle \(\frac{\pi}{2} \) about the \(x_1 \)-axis.

(c) Show that the quaternions can be viewed as the four-dimensional real vector space spanned by the basis
\[e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad e_2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad e_4 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \]
and with the algebra structure being defined via the matrix products of the \(e_j \)'s (typically, one writes \(1, i, j, k \) instead of \(e_1, e_2, e_3, e_4 \)). Show that in this representation the unit quaternions are nothing but \(SU(2) \) and exhibit a homomorphism \(Q \) of the unit quaternions onto \(SO(3) \) so that \(\ker(Q) = \{\pm 1\} \).

Which rotation does the unit quaternion \(\xi_1 + \xi_2 i + \xi_3 j + \xi_4 k \) represent (i.e., what are the axis and angle of rotation)?
32. (a) Let $0 \leq r_1 < r_2 \leq \infty$ and suppose that u is a real-valued harmonic function on the annulus $A = \{ z \in \mathbb{C} : r_1 < |z| < r_2 \}$. Prove that there exists some unique $k \in \mathbb{R}$ and $f \in H(A)$ such that

$$u(z) = k \log|z| + \text{Re}f(z) \quad \forall \ z \in A$$

Next, assume that $r_1 = 0$. Prove that if u is bounded on A, then $k = 0$ and u extends to a harmonic function throughout $|z| < r_2$.

(b) Suppose $\Omega \subset \mathbb{C}$ is open and simply connected. Let $z_0 \in \Omega$ and suppose that $u \in \Omega \setminus \{z_0\} \to \mathbb{R}$ is harmonic such that

$$u(z) - \log|z - z_0|$$

remains bounded as $z \to z_0$. Show that there exists $f \in H(\Omega)$ such that $f(z_0) = 0$, $u(z) = \log|f(z)|$, and f is one-to-one some one some disk around z_0.

33. Suppose that u, v are harmonic in Ω so that ∇u and ∇v never vanish in Ω (we call this non-degenerate). If $f = u + iv$ is conformal (i.e., $f \in H(\Omega)$), then we know that the level curves $u =$ const and $v =$ const in Ω are perpendicular to each other (why?). This exercise addresses the converse:

(a) Suppose v, w are harmonic and non-degenerate in Ω such that the level curves of v and w coincide in Ω. How are v and w related?

(b) Suppose u, v are harmonic and non-degenerate in Ω, and assume their level curves are perpendicular throughout Ω. Furthermore, assume that $|\nabla u(z_0)| = |\nabla v(z_0)|$ at one point $z_0 \in \Omega$. Prove that either $u + iv$ or $u - iv$ is conformal in Ω.

34. We say that $u : \Omega \to [-\infty, \infty)$ is subharmonic ($u \in \text{sh}(\Omega)$) provided it is continuous and it satisfies the sub mean value property (SMVP): for every $z_0 \in \Omega$ and any $0 \leq r < \text{dist}(z_0, \partial\Omega)$,

$$u(z_0) \leq \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta \quad (11.20)$$

In addition, we require that $u \neq -\infty$. Establish the following ten properties:

(i) Maximum principle: if Ω is bounded and $u \in \text{sh}(\Omega)$, then

$$\sup_{\zeta \in \partial\Omega} \limsup_{z \to \zeta} u(z) \leq M < \infty \Longrightarrow u(z) \leq M \quad \forall \ z \in \Omega$$

with equality being attained on the right-hand side for some $z \in \Omega$ iff $u =$ const.

(ii) Let $u \in \text{sh}(\Omega)$ on Ω and suppose h is harmonic on some open disk K compactly contained in Ω and $h \in C(\bar{K})$. Further, assume that $u \leq h$ on ∂K. Show that $u \leq h$ on K. Further if $u = h$ at some point in K, then $u = h$ on K (this explains the name sub-harmonic).
(iii) If $u_1, \ldots, u_N \in \mathfrak{h}(\Omega)$, then so is $\max(u_1, \ldots, u_N)$ and $\sum_{j=1}^{N} c_j u_j$ with $c_j \geq 0$.

(iv) If h is harmonic on Ω and $\phi : \mathbb{R} \to \mathbb{R}$ is convex, then $\phi \circ h \in \mathfrak{h}(\Omega)$. If $v \in \mathfrak{h}(\Omega)$, and $\phi : [\infty, \infty) \to \mathbb{R}$ is continuous, non-decreasing, and convex, then $\phi \circ v \in \mathfrak{h}(\Omega)$.

(v) This is a converse of (ii): suppose $u : \Omega \to [\infty, \infty)$ is continuous so that for every disk K with $\bar{K} \subset \Omega$ the harmonic majorization property holds: if $h \in C(\bar{K})$ is harmonic on K and satisfies $u \leq h$ on ∂K then $u \leq h$ on K. Prove that u is subharmonic.

(vi) Prove that subharmonic functions are characterized already by the local SMVP: for every $z_0 \in \Omega$ there exists $0 < \rho(z_0) \leq \operatorname{dist}(z_0, \partial \Omega)$ such that (11.20) holds for every $0 < r < \rho(z_0)$.

(vii) Suppose $u \in \mathfrak{h}(\Omega)$. Prove that for any $z_0 \in \Omega$ and any $0 < r_1 < r_2 < \operatorname{dist}(z_0, \partial \Omega)$,

$$-\infty < \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + r_1 e^{i\theta}) \, d\theta \leq \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + r_2 e^{i\theta}) \, d\theta$$

and

$$\lim_{r \to 0^+} \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + re^{i\theta}) \, d\theta = u(z_0)$$

as well as

$$\int_{0}^{2\pi} |u(z_0 + re^{i\theta})| \, d\theta < \infty$$

for any $0 < r < \operatorname{dist}(z_0, \partial \Omega)$.

(viii) Suppose $u \in C^2(\Omega)$. Then $u \in \mathfrak{h}(\Omega)$ iff $\Delta u \geq 0$ in Ω.

(ix) Suppose $f \in \mathcal{H}(\Omega)$, $f \neq 0$. Prove that the following functions are in $\mathfrak{h}(\Omega)$: $\log |f(z)|$, $|f(z)|^\alpha$ for any $\alpha > 0$, $e^{\beta |f(z)|}$ for any $\beta > 0$.

(x) Show that in $C(\Omega)$ the harmonic functions are precisely those that satisfy the mean value property. Use this to prove that the limit of any sequence $\{u_n\}_{n=1}^{\infty}$ of harmonic functions on Ω which converges uniformly on every compact subset of Ω is again harmonic.

35. (a) Let $\lambda \geq 1$ and let S be the sector

$$S := \left\{ re^{i\theta} \mid 0 < r < \infty, |\theta| < \frac{\pi}{2\lambda} \right\}$$

Let $u \in \mathfrak{h}(S) \cap C(S)$ satisfy $u \leq M$ on ∂S and $u(z) < |z|^\rho$ in S where $\rho < \lambda$. Prove that $u \leq M$ on S.

(b) Let $u \in \mathfrak{h}(\Omega)$ where Ω is a bounded domain. Further, suppose $E := \{z_n\}_{n=1}^{\infty} \subset \partial \Omega$ has the property that

$$\limsup_{z \to \partial \Omega \setminus E} u(z) \leq M$$

Prove that $u \leq M$ in Ω.
36. Let \(u \) be subharmonic on a domain \(\Omega \subset \mathbb{C} \).

(a) Prove that

\[\langle u, \Delta \phi \rangle \geq 0 \quad \forall \phi \in C^\infty_{\text{comp}}(\Omega), \phi \geq 0 \]

where \(\langle \cdot, \cdot \rangle \) denotes the standard \(L^2(\Omega) \) pairing, and deduce from it that there exists a unique positive Borel measure (called the Riesz measure) on \(\Omega \) such that

\[\langle u, \Delta \phi \rangle = \int_{\Omega} \phi(x) \mu(dx) \]

for all \(\phi \in C^\infty_{\text{comp}}(\Omega) \) (from this identity, \(\mu(K) < \infty \) for all compact \(K \subset \Omega \)). In other words, even if a subharmonic function is not \(C^2 \) its distributional Laplacean is no worse than a measure. Find \(\mu \) for \(u = \log |f| \) where \(f \in \mathcal{H}(\Omega) \).

(b) Show that with \(\mu \) as in (a) and for any \(\Omega_1 \subset \Omega \) compactly contained,

\[u(z) = \int_{\Omega_1} \log |z - \zeta| \mu(d\zeta) + h(z) \quad (11.21) \]

where \(h \) is harmonic on \(\Omega_1 \). This is “Riesz’s representation of subharmonic functions”. Interpret its meaning for \(u = \log |f| \) with \(f \in \mathcal{H}(\Omega) \). Show that, conversely, any nonnegative Borel measure \(\mu \) which is finite on compact sets of \(\Omega \) defines a subharmonic function \(u \) via (11.21) (with \(h = 0 \)) provided the integral on the right-hand side is continuous with values in \([-\infty, \infty) \). Give an example of a \(\mu \) where \(u \) is not continuous. But show that (11.21) is always upper semicontinuous (usc), i.e,

\[u(z_0) \geq \limsup_{z \to z_0} u(z) \]

for all \(z_0 \in \Omega \). Check that upper semicontinuous functions always attain their supremum on compact sets. In fact, the theory of subharmonic functions which we have developed so far applies to the wider class of usc functions satisfying the SMVP (try to see this) basically unchanged.

(c) With \(u \) and \(\mu \) as in (a), show that

\[\int_0^1 u(z + re(\theta)) \, d\theta - u(z) = \int_0^r \frac{\mu(D(z, t))}{t} \, dt \quad (11.22) \]

for all \(D(z, r) \subset \Omega \) (this is “Jensen’s formula”). In other words, \(\mu \) measures the extent to which the mean value property fails and really is a sub mean value property. Now find an estimate for \(\mu(K) \) where \(K \subset \Omega \) is compact in terms of the pointwise size of \(u \). Finally, write (11.22) down explicitly for \(u = \log |f| \) with \(f \in \mathcal{H}(\Omega) \).

37. This exercise introduces the important Harnack inequality and principle for harmonic functions.
(a) Let \(P_r(\phi) = \frac{1-r^2}{1-2r\cos \phi + r^2} \) be the Poisson kernel. Show that for any \(0 < r < 1 \)
\[
\frac{1-r}{1+r} \leq P_r(\phi) \leq \frac{1+r}{1-r}
\] (11.23)
and deduce from this that for any nonnegative harmonic function \(u \) on \(D \) one has
\[
\sup_{|z| \leq r} u(z) \leq C(r) \inf_{|z| \leq r} u(z)
\]
where \(C(r) < \infty \) for \(0 < r < 1 \). What is the optimal constant \(C(r) \)?

Now show that for any \(\Omega \) and \(K \) compactly contained in \(\Omega \) one has the inequality
\[
\sup_{z \in K} u(z) \leq C(K, \Omega) \inf_{z \in K} u(z)
\]
for nonnegative harmonic functions \(u \) on \(\Omega \). Now prove that if \(u : \mathbb{R}^2 \to \mathbb{R} \) is harmonic, and bounded from one side (thus, \(u \leq M \) in \(\Omega \) for some finite constant \(M \) or \(u \geq M \)), then \(u \) is constant.

(b) Suppose \(u_1 \leq u_2 \leq u_3 \leq \ldots \) are harmonic functions in \(\Omega \). Let \(u = \sup_n u_n \). Then either \(u \equiv \infty \) or \(u \) is harmonic in \(\Omega \).

38. Let \(u \in \text{sh}(D) \). Show that the following two properties are equivalent:

(i) \(u \) has a harmonic majorant on \(D \), i.e., there exists \(h : D \to \mathbb{R} \) harmonic such that \(u \leq h \) on \(D \).

(ii) \(\sup_{0 < r < 1} \int_0^1 u(re(\theta)) \, d\theta < \infty \) where \(e(\theta) = e^{2\pi i \theta} \).

We say that \(h_0 \) is a least harmonic majorant of \(u \) iff \(h_0 \) is a harmonic majorant of \(u \) on \(D \) and if \(h \geq h_0 \) for every other harmonic majorant \(h \) of \(u \).

Prove that if \(u \) has a harmonic majorant on \(D \), then it has a least harmonic majorant. Given an example of a \(u \in \text{sh}(D) \) that has no harmonic majorant.

39. Let \(f \in \mathcal{H}(\mathbb{D}), f \neq 0 \). Then prove that the following two properties are equivalent (here \(\log^+ x = \max(0, \log x) \)):

(i) \(\log^+ |f| \) has a harmonic majorant in \(\mathbb{D} \).

(ii) \(f = \frac{g}{h} \) where \(g, h \in \mathcal{H}(\mathbb{D}) \) with \(|g| \leq 1, 0 < |h| \leq 1 \) in \(\mathbb{D} \).

40. You should compare this to Problem 16.

(a) Suppose \(Z = \{z_n\}_{n=0}^\infty \subset \mathbb{D} \setminus \{0\} \) satisfies
\[
\sum_{n=0}^\infty (1 - |z_n|) < \infty
\]

Prove that
\[
B(z) = \prod_{n=0}^\infty \frac{|z_n|}{\bar{z}_n} \frac{z_n - z}{1 - \bar{z}_n z}
\]
converges uniformly on every $D(0, r)$ with $0 < r < 1$ to a holomorphic
function $B \in \mathcal{H}((\mathbb{D}))$ with $|B(z)| \leq 1$ for all $|z| < 1$. It vanishes exactly
at the z_n (with the order of the zero being equal to the multiplicity of z_n
in Z).

(b) We know that $\lim_{r \to 1^-} B(re^{i\theta})$ exists for almost every θ (after all,
$B \in h^\infty(\mathbb{D})$ so Chapter 3 applies). Denote these boundary values by
$B(e^{i\theta})$. Prove that $|B(e^{i\theta})| = 1$ for almost every θ.

41. Suppose N is a Riemann surface such that \bar{N} is compact and is a manifold
with boundary. I.e., for every $p \in \partial N$ there exists a neighborhood U of p
in \bar{N} and a map $\phi : U \to \mathbb{R}^2_+$ such that ϕ takes U homeomorphically onto
$\mathbb{D} \cap \{\text{Im } z \geq 0\}$. Moreover, we demand that the transition maps between
such charts are conformal on $\text{Im } z > 0$. Prove that then $\bar{N} \subset M$ where M is a Riemann surface. In other words, N can be extended to a strictly
larger Riemann surface.

42. This problem takes us back to the origins of Riemann surfaces as a way of
"explaining" multi-valued functions arising through analytic continuation.
Let M, N be fixed Riemann surfaces. A function element is a pair (f, D)
where $D \subset M$ is a connected, open non-empty subset of M and $f : D \to N$
is analytic. We say that two function elements (f_1, D_1) and (f_2, D_2) are
direct analytic continuations of each other iff $D_1 \cap D_2 \neq \emptyset$, $f_1 = f_2$
on $D_1 \cap D_2$.

Note that by the uniqueness theorem on Riemann surfaces there is at
most one f_2 that makes (f_2, D_2) a direct analytic continuation of (f_1, D_1).
This relation, denoted by \sim, is reflexive and symmetric but not transi-
tive (why?). On the other hand, it gives rise to an equivalence relation,
denoted by \sim, in the following canonical way: We say that two function elements (f, D) and (g, \bar{D}) are analytic continuations of each other iff there
exist function elements (f_j, D_j), $0 \leq j \leq N$ such that $(f_0, D_0) = (f, D)$,
$(f_N, D_N) = (g, \bar{D})$, and $(f_j, D_j) \sim (f_{j+1}, D_{j+1})$ for each $0 \leq j < N$.

The complete analytic function of (f, D) is simply the equivalence class
$[(f, D)]_{\sim}$ of this function element under \sim. Heuristically, we can regard
this as a single analytic function F defined on a Riemann surface \tilde{M} as
follows: writing

$$[(f, D)]_{\sim} = \{(f_\alpha, D_\alpha) \mid \alpha \in \mathcal{A}\}$$

we regard each D_α as distinct from any other D_β (even if $D_\alpha = D_\beta$).
Next, define $f = f_\alpha$ on D_α. Finally, identify $p \in D_\alpha$ with $q \in D_\beta$ iff (i)
$p = q$ when considered as points in M and (ii) $f_\alpha = f_\beta$ near p.

In other words, we let the functions label the points and only identify if we
have local agreement. You should convince yourself that this is precisely
the naive way in which we picture the surfaces of log z, \sqrt{z} etc.
In this problem, you are asked to check that this construction does indeed give rise to a Riemann surface and a function defined on it. Throughout, M, N will be fixed Riemann surfaces and any function element and complete analytic function will be defined relative to them.

(a) Given a complete analytic function A and $p \in M$, we define an equivalence relation \sim_p on function elements in $\{(f, D) \in A \mid p \in D\}$ as follows:

$$(f_0, D_0) \sim_p (f_1, D_1) \iff f_0 = f_1 \text{ near } p$$

We define $[f, p]$ to be the equivalence class of (f, D), $p \in D$ under \sim_p and call this a germ.

Prove that the germ $[f, p]$ uniquely determines three things: the point p, the value $f(p)$, and the complete analytic function determined by f near p.

(b) Let $[f_0, p_0]$ be a germ and let $A = A(f_0, p_0)$ be the associated complete analytic function. Define

$$R(M, N, f_0, p_0) = \{[f, p] \mid p \in D, (f, D) \in A\}$$

and endow this set with a topology as follows: the base for the topology is

$$[f, D] = \{[f, p] \mid p \in D, (f, D) \in A\}$$

Prove that this turns $R(M, N, f_0, p_0)$ into a two-dimensional, arcwise connected, Hausdorff manifold with a countable base for the topology.

(c) On $R(M, N, f_0, p_0)$ there are two natural maps: the first is the canonical map $\pi : R(M, N, f_0, p_0) \to M$ (not necessarily onto) defined by $\pi([f, p]) = p$. The second is the "single valued" analytic continuation of (f_0, p_0), denoted by F, and defined as $F([f, p]) = f(p)$. Prove that π is a local homeomorphism and use this to define a complex structure on $R(M, N, f_0, p_0)$ which makes π into a local conformal isomorphism. Hence $R = R(M, N, f_0, p_0)$ is a Riemann surface, called the unramified Riemann surface of the germ $[f_0, p_0]$. Prove that F is an analytic function $R \to N$.

You should try to picture the unramified Riemann surfaces

$$R(\mathbb{C}, \mathbb{C}, \log z, 1), \quad R(\mathbb{C}, \mathbb{C}, z^{\frac{1}{n}}, 1), \quad (11.24)$$

$n \geq 2$. Prove that they cover \mathbb{C}^*. Compute the fundamental groups $\pi_1(R)$ of these surfaces and prove that

$$R(\mathbb{C}, \mathbb{C}, \log z, 1) \simeq \mathbb{C}$$

$$R(\mathbb{C}, \mathbb{C}, z^{\frac{1}{n}}, 1) \simeq \mathbb{C}^*, \quad n \geq 2$$

in the sense of conformal isomorphisms.

(d) Let (U, ϕ) be a chart at $p_1 \in M$ with $\phi(p_1) = 0$, $\phi(U) = \mathbb{D}$. Let $(f, p) \in R(M, N, f_0, p_0)$ with $p \in U \setminus \{p_1\}$. If (f, p) can be analytically continued along every path in $U \setminus \{p_1\}$ but not into p_1 itself, then we say
that \(\mathcal{R}(U, N, f, p)\) represents a branch point of \(\mathcal{R} = \mathcal{R}(M, N, f_0, p_0)\) rooted at \(p_1\). Under a branch point \(p_1\) rooted at \(p_1 \in M\) we mean an equivalence class of such Riemann surfaces under the following equivalence relation: Suppose \(\mathcal{R}(U, N, f, p)\) and \(\mathcal{R}(V, N, g, q)\) each represent a branch point of \(\mathcal{R}\) rooted at \(p_1\). We say that they are equivalent iff there is another such \(\mathcal{R}(W, N, h, r)\) with

\[
\mathcal{R}(W, N, h, r) \subset \mathcal{R}(U, N, f, p) \cap \mathcal{R}(V, N, g, q)
\]

Convince yourself that \(\mathcal{R}(U, N, f, p)\) is not necessarily the same as \(\pi^{-1}(U)\) (it can be smaller). This is why we need to distinguish between \(p_1\) and its root \(p_1\) in \(M\).

Show that each of the surfaces in (11.24) has a branch point rooted at zero. These examples achieve all possible branching numbers which we now define: Let \(p_1 \in M\) be the root of some branch point \(p_1\) and pick \(\mathcal{R}(U, N, f, p)\) from the equivalence class of surfaces representing this branch point \(p_1\) as explained above. Let \(\phi(U) = \mathbb{D}, \phi(p_1) = 0\) be a chart and let \(\alpha(t) = \phi^{-1}(\phi(p)e^{2\pi it})\) be a closed loop in \(U\) around \(p_1\). Then we let \([f_n, p]\) be the germ obtained by analytic continuation of \([f, p]\) along \(\alpha^n = \alpha \circ \ldots \circ \alpha\) (\(n\)-fold composition), \(n \geq 1\). We define the branching number at \(p_1\) to be

\[
B(p_1) := \begin{cases} \infty & \text{iff } [f_n, p] \neq [f, p] \quad \forall n \geq 1 \\ \min\{n \geq 1 \mid [f_n, p] = [f, p]\} - 1 & \text{otherwise} \end{cases}
\]

Prove that this is well-defined, i.e., it neither depends on the representative \(\mathcal{R}(U, N, f, p)\) nor on the germ \([f, p]\) (hint: use the monodromy theorem and the fact that the winding number classifies homotopy classes of closed curves in the punctured disk). If \(B(p_1) = \infty\), then we say that \(p_1\) is a logarithmic branch point.

(e) We now show that at each branch point \(p_1\) of \(\mathcal{R}\) with \(B(p_1) < \infty\) and for every representative \(\mathcal{R}(U) = \mathcal{R}(U, N, f, p)\) of that branch point there is a chart \(\Psi\) defined globally on \(\mathcal{R}(U)\) (known as uniformizing variable) which maps \(\mathcal{R}(U)\) bi-holomorphically onto \(\mathbb{D}^*\). The construction is very natural and is as follows: recall that \(\phi : U \rightarrow \mathbb{D}\) is a chart that takes \(p_1 \mapsto 0\). Pick a path \(\gamma\) that connects \([f, p]\) with an arbitrary \([g, q] \in \mathcal{R}(U)\) (recall that the latter is arc-wise connected), and pick a branch \(\rho_0\) of the \(n^{th}\) root \(z^{1/n}\) locally around \(z_0 = \phi(p)\). Here \(n = B(p_1) + 1\). Now continue the germ \([\rho_0, z_0]\) analytically along the path \(\phi \circ \pi \circ \gamma\) to a germ \([\rho_\gamma, z]\) where \(z = \phi(q)\). Define

\[
\Psi([g, q]) = \rho_\gamma(z)
\]

Prove that \(\Psi\), once \(\rho_0\) has been selected, is well-defined. Prove that \(\Psi\) is analytic, and a homeomorphism onto \(\mathbb{D}^*\). All you need to use is the concept of branching number from (d) plus some definition chasing.

Convince yourself that for the case of \(\mathcal{R}(\mathbb{C}, \mathbb{C}, z^{1/n}, 1)\) one has can think of \(\Psi^{-1}(z) = z^n\). Obviously, in that case \((\Psi^{-1}(z))^{1/n} = (z^n)^{1/n} = z\) for
all } z \in \mathbb{D}^*. \) The point of our discussion here is that locally at a branch point with finite branching number } n - 1 \) any unramified Riemann surface behaves the same as the } n^{th} \text{ root. We also see from the root example} that we should be able to analytically continue the global function } F \text{ into a branch point by means of the chart } \Psi, \text{ at least in the algebraic case to which we now turn.}

(f) We define the \textit{ramified Riemann surface} by ”adding” all algebraic branch points. The latter are defined as being precisely those branch points with finite branching number so that } F (relative to the uniformizing variable } \Psi) \text{ has a removable singularity at zero, i.e., } F \circ \Psi^{-1} : \mathbb{D}^* \to \mathbb{N} \text{ extends as an analytic function } \mathbb{D} \to \mathbb{N}.

Give an example of \(R(C^*, C_{\infty}, f_0, 1) \) which has a non-algebraic branch point rooted at } z = 0 \text{ with finite branching number.}

Let } P \text{ be the set of algebraic branch points of } R(M, N, f_0, p_0) \text{ and define } \tilde{R} = \tilde{R}(M, N, f_0, p_0) = R(M, N, f_0, p_0) \cup P

Show that } \tilde{R} \text{ is canonically a Riemann surface to which } \tilde{\pi} \text{ and } \tilde{F} \text{ have analytic continuations } \tilde{\pi} : \tilde{R} \to M, \text{ and } \tilde{F} : \tilde{R} \to N, \text{ respectively. We call } \tilde{R} \text{ the \textit{ramified Riemann surface}, and } \tilde{F} \text{ the complete analytic function of the germ } [f_0, p_0]. \text{ Check that at each } p \in P \text{ the branching number } B(p) = \nu(\tilde{\pi}, p) - 1 \text{ where } \nu \text{ is the valency as defined earlier.}

Now suppose that } \tilde{R} = \tilde{R}(M, N, f_0, p_0) \text{ is compact. Prove that } M \text{ is compact. Show that there can only be finitely many branch points in } \tilde{R}; \text{ we denote the set of their projections onto } M \text{ by } \mathcal{B} \text{ and define } \mathcal{P} = \tilde{\pi}^{-1}(\mathcal{B}). \text{ Prove that } \tilde{\pi} : \tilde{R} \setminus \mathcal{P} \to M \setminus \mathcal{B} \text{ is a covering map and that the number of pre-images of this restricted map is constant; this is called the \textit{number of sheets of } } \tilde{R} \text{ and it equals the degree of } \tilde{\pi} \text{ (if you know what a branched covering map is convince yourself that } \tilde{\pi} \text{ is one). Establish the following Riemann-Hurwitz type relation:}

\[g_{\tilde{R}} = 1 + S(g_M - 1) + \frac{1}{2} \sum_p B(p) \]

(11.25)

where } g_{\tilde{R}}, g_M \text{ are the respective genera, } S \text{ is the number of sheets of } \tilde{R}, \text{ and the sum runs over the branch points } p \text{ in } \mathcal{R} \text{ with } B(p) \text{ being the respective branching numbers.}

43. Here is a useful fact on how to glue analytic germs together to form a single analytic sheet on simply connected surfaces.

Suppose } M \text{ is a simply connected Riemann surface and } \{ D_\alpha : \alpha \in A \} \text{ a collection of domains (connected, open). Assume further that } M = \cup_{\alpha \in A} D_\alpha \text{ and that for each } \alpha \in A \text{ there is a family } F_\alpha \text{ of analytic functions } f : D_\alpha \to N \text{ such that if } f \in F_\alpha \text{ and } z \in D_\alpha \cap D_\beta \text{ then there is some } g \in F_\beta \text{ so that } f = g \text{ near } z. \text{ Show that, given } \gamma \in A \text{ and some } f \in F_\gamma \text{ there exists an analytic function } F_\gamma : M \to N \text{ so that } F_\gamma = f \text{ on } D_\gamma.
In this problem, we turn to a more systematic development of the ramified Riemann surfaces of algebraic functions. Throughout, $M = N = \mathbb{C}P^1$ are fixed; in particular, note that analytic functions are allowed to take the value ∞.

As usual, we need to start with some definitions: an analytic germ $[f_0, z_0]$ is called algebraic iff there is a polynomial $P \in \mathbb{C}[w, z]$ of positive degree so that $P(f_0(z), z) = 0$ identically for all z close to z_0. The complete analytic function

$$\tilde{F} : \tilde{R} = \tilde{R}(\mathbb{C}P^1, \mathbb{C}P^1, f_0, p_0) \to \mathbb{C}P^1$$

generated by $[f_0, p_0]$ is called an algebraic function.

(a) Show that $P(f(z), z) = 0$ for all $[f, z] \in \tilde{R}$. Prove that we can take P to be irreducible. Also, show that this irreducible polynomial is uniquely determined up to constant factors. This last statement is a bit harder, and it helps to know what the resultant from algebra is: given two relatively prime polynomials $P, Q \in \mathbb{C}[w, z]$, there exist $A, B \in \mathbb{C}[w, z]$ such that

$$A(w, z)P(w, z) + B(w, z)Q(w, z) = R(z) \in \mathbb{C}[z]$$

is a nonzero polynomial in z alone; it is called the resultant of P and Q. The proof of this fact is nothing but Euclid’s algorithm carried out in the polynomials in $K(z)[w]$ where $K(z)$ is the quotient field of $\mathbb{C}[z]$, i.e., the field of rational functions of z. The resultant has many interesting properties, for example, if both P and Q have leading coefficient 1, then

$$R(z) = \prod_{\zeta_j \neq \eta_k}(\zeta_j(z) - \eta_k(z))$$

where ζ_j runs over all zeros of $P(w, z)$ and η_k runs over all zeros of $Q(w, z)$ in w, respectively. Thus, $R(z_0) = 0$ iff $P(w, z_0)$ and $Q(w, z_0)$ have a common zero in w. Moreover, with

$$P(w, z) = \sum_{j=0}^{n} a_j(z)w^j, \quad Q(w, z) = \sum_{k=0}^{m} b_k(z)w^k$$

it follows that $R(z)$ is a determinant in the coefficients a_j, b_k (for this see Lang [10]).

By means of the resultant, it is now easy to show the aforementioned uniqueness.

(b) Prove the following version of the implicit function theorem: Let $P(w, z) \in \mathbb{C}[w, z]$ satisfy $P(w_1, z_1) = 0$, $P_w(w_1, z_1) \neq 0$. Then there is a unique analytic germ $[f_1, z_1]$ with $P(f_1(z), z) = 0$ locally around z_1 and with $f_1(z_1) = w_1$.
Here’s one way of doing it, you should provide the details. Prove that there are $\varepsilon > 0$ and $\delta > 0$ such that

$$P(w, z) \neq 0 \quad \forall \, |z - z_1| < \delta, |w - w_1| = \varepsilon$$

Now show that

$$\frac{1}{2\pi i} \oint_{|w-w_1|=\varepsilon} \frac{P_w(w, z)}{P(w, z)} \, dw = 1 \quad \forall \, |z - z_1| < \delta$$

and infer from this that $P(w, z) = 0$ has a unique zero $w = f_1(z) \in \mathbb{D}(w_1, \varepsilon)$ for all $|z - z_1| < \delta$. Finally, write

$$f_1(z) = \frac{1}{2\pi i} \oint_{|w-w_1|=\varepsilon} w \frac{P_w(w, z)}{P(w, z)} \, dw$$

and conclude that $f_1(z)$ is analytic in $\mathbb{D}(z_1, \delta)$.

(c) Use (b) to prove the following: If $P(w, z) = \sum_{j=0}^{n} a_j(z) w^j$ is an irreducible polynomial with $a_n \neq 0$, then up to finitely many z the polynomial $w \mapsto P(w, z)$ has exactly n simple roots. (Hint: Use the resultant of $P(w, z)$ and $P_w(w, z)$ – also called the discriminant of P).

(d) Use (c) to prove the following: Given an algebraic germ $[f_0, z_0]$, there are finitely many points $\{\zeta_j\}_{j=1}^{J} \in \mathbb{C}P^1$ (called ”critical points”) such that $[f_0, z_0]$ can be analytically continued along every path in $\mathbb{C}P^1 \setminus \{\zeta_1, \ldots, \zeta_J\}$.

As a corollary, show that if the unramified Riemann surface

$$\mathcal{R}(\mathbb{C}P^1, \mathbb{C}P^1, f_0, z_0)$$

has a branch point at p, then p has to be rooted over one of the ζ_j. Also, prove that $\#\pi^{-1}(z)$ is constant on $\mathbb{C}P^1 \setminus \{\zeta_1, \ldots, \zeta_J\}$ and no larger than the degree of $P(w, z)$ in w.

(e) Now show that all branch points of the unramified Riemann surface

$$\mathcal{R}(\mathbb{C}P^1, \mathbb{C}P^1, f_0, z_0)$$

generated by an algebraic germ are necessarily algebraic (see part (d) of the previous problem for what this means). As a corollary, conclude that the ramified Riemann surface of an algebraic germ is compact.

(f) Prove the following remarkable theorem: Let $z = z(p)$ be a meromorphic function of degree $n \geq 1$ from a compact Riemann surface M to $\mathbb{C}_\infty \simeq \mathbb{C}P^1$ (we write z for the variable on \mathbb{C}_∞ and p for a point on M). Prove that if $f : M \to \mathbb{C}P^1$ is any other non-constant meromorphic function, then f satisfies an algebraic equation

$$f^n + \sigma_1(z)f^{n-1} + \sigma_2(z)f^{n-2} + \cdots + \sigma_{n-1}(z)f + \sigma_n(z) = 0 \quad (11.26)$$

of degree n, with rational functions $\sigma_j(z)$.
In particular, conclude the following from this theorem: if the ramified Riemann surface
\[\tilde{\mathcal{R}}(\mathbb{C}P^1, \mathbb{C}P^1, f_0, z_0) \]
is compact, where \([f_0, z_0]\) is any holomorphic germ, then \([f_0, z_0]\) is algebraic.

To prove the theorem, proceed as follows: remove from \(\mathbb{C}_\infty\) the point \(\infty\), as well as the image \(z(p)\) of any branch point of the map \(p \mapsto z(p)\) (recall that a branch point of an analytic function is defined as having valency strictly bigger than one). Denote these finitely many points as \(\mathcal{S} = \{z_j\}_{j=0}^J\). If \(z \in \mathbb{C}_\infty \setminus \mathcal{S}\), then let
\[\{p_1(z), \ldots, p_n(z)\} \]
be the \(n\) pre-images under \(z(p)\) and define
\[\sigma_j(z) = \sum_{1 \leq \nu_1 < \nu_2 < \ldots < \nu_j \leq n} f(p_{\nu_1}) \cdot \ldots \cdot f(p_{\nu_j}) \]
I.e., \(\sigma_j\) is the \(j^{th}\) elementary symmetric function in \(f(p_1), \ldots, f(p_n)\). Prove that each \(\sigma_j\) extends as a meromorphic function to all of \(\mathbb{C}_\infty\). Finally, verify that (11.26) holds.

We remark (I encourage you to try it) that the machinery presented so far implies that every compact Riemann surface is the ramified Riemann surface of some algebraic germ. In other words, any compact Riemann surface is obtained by analytic continuation of a suitable algebraic germ! As the surface of the logarithm shows, this is not true in the non-compact case.

(g) Finally, use (f) to conclude the following result on algebraic germs: The ramified Riemann surface of an algebraic germ which satisfies an irreducible equation \(P(w, z) = 0\) with \(\deg_w(P) = n\) has \(n\) sheets, and therefore contains every germ that satisfies this algebraic equation.

45. Let us give some applications these ideas:

(a) Let \(A(z)\) be an \(n \times n\) matrix so that each entry \(A_{ij}(z)\) is a polynomial in \(z\). Let the eigenvalues be denoted by \(\lambda_j(z)\), \(1 \leq j \leq n\). Prove that around each point \(z_0\) at which \(\lambda_j(z_0)\) is a simple eigenvalue, \(\lambda_j(z)\) is an analytic function of \(z\). Furthermore, if \(z_1\) is a point at which \(\lambda_j(z_1)\) has multiplicity \(k\), then there is a local representation of the form
\[\lambda_j(z) = \sum_{n=0}^{\infty} a_n(z - z_1)^{\ell} \]
with some \(1 \leq \ell \leq k\) (this is called a Puiseaux series). Now assume that \(A(z)\) is Hermitian for all \(z \in \mathbb{R}\). Prove that each \(\lambda_j\) is analytic on a
neighborhood of R. In other words, if $z_1 \in R$ then the Puiseux series is actually a power series. Check these statements by means of the examples

$$A(z) = \begin{bmatrix} 0 & z \\ 1 & 0 \end{bmatrix}, \quad A(z) = \begin{bmatrix} 0 & z \\ z & 0 \end{bmatrix}$$

(b) For each of the following algebraic functions, you are asked to understand their Riemann surfaces by answering each of the following questions: Where are the branch points on the surface (be sure to check infinity)? How many sheets does it have? How are these sheets permuted under analytic continuation along closed curves which avoid the (roots of the) branch points? What is its genus? You should also try to obtain a sketch or at least some geometric intuition of the Riemann surface.

$$w = \sqrt[4]{\sqrt{z} - 1}, \quad w = \sqrt[3]{2\sqrt{z} + z + 1}, \quad w^3 - 3w - z = 0$$

$$w = \sqrt{(z - z_1)(z - z_2)\cdots(z - z_m)}, \quad w = \sqrt[3]{z^2 - 1}$$

46. Let $M = \mathbb{C}/\Lambda$ where Λ is the lattice generated by $\omega_1, \omega_2 \in \mathbb{C}^\ast$ with $\text{Im}(\frac{\omega_1}{\omega_2}) \neq 0$. As usual P denotes the Weierstrass function on M.

(a) Suppose that $f \in \mathcal{M}(M)$ has degree two. Prove that there exists $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}(2, \mathbb{C})$ and $w \in \mathbb{C}$ such that

$$f(z) = \frac{aP(z - w) + b}{cP(z - w) + d}$$

(b) Prove that every $f \in \mathcal{M}(M)$ is a rational function of P and P'. If f is even, then it is a rational function of P alone.

47. Discuss Hodge’s theorem for the Riemann surfaces $M = \{ r_1 < |z| < r_2 \}$ where $0 \leq r_1 < r_2 \leq \infty$. Identify $\Omega^1_2(M), \eta_2(M)$ as well as E for each of these cases and show directly that

$$\Omega^1_2(M) = E \oplus \ast E \oplus \eta_2(M)$$
Chapter 12
Hints and Solutions

1. This is an ellipse with focal points a, b provided $k > |a − b|$, the line segment ab if $k = |a − b|$ and the empty set if $k < |a − b|$. To obtain the familiar equation of an ellipse, assume wlog that $a, b \in \mathbb{R}$ with $a + b = 0$. Then square $|z − a| = k − |z + a|$, put the remaining $−2k|z + a|$ on one side and square again.

(b) For a fixed, $z \mapsto w$ is a fractional linear transformation. Hence it preserves circles. Observe that for $|z| = 1$ one has $|w| = \left| \frac{z−a}{z−a̅} \right| = 1$. Since also $a \mapsto 0$, we see that $|w| < 1$ is equivalent with $|z| < 1$, $|w| = 1$ with $|z| = 1$, and $|w| > 1$ with $|z| > 1$.

2. With $P(z) = a_n \prod_{j=1}^{n}(z − z_j)$, one has

$$P^∗(z) = z^n P(\overline{z}^{−1}) = a_n \prod_{j=1}^{n}(1 − \overline{z_j}z).$$

Hence, $P(z) + e^{i\theta}P^∗(z) = 0$ implies that

$$\prod_{j=1}^{n}|z − z_j| = \prod_{j=1}^{n}|1 − \overline{z_j}z|$$

Hence, by 1.(b) we must have $|z| = 1$ as claimed.

3. Clearly, $p(1) > 0$. Suppose $|z| ≤ 1, z \neq 1$. Then multiply $P(z)$ with $1 − z$:

$$(1 − z)p(z) = p_0 − [(p_0 − p_1)z + (p_1 − p_2)z^2 + \ldots + (p_{n−1} − p_n)z^n + p_n z^{n+1}]$$

Since $p_j − p_{j+1} > 0$ for $0 ≤ j < n$ and $p_n > 0$, and since z, z^2, \ldots, z^{n+1} are at most of length one but not all the same, we conclude that

$$|(p_0 − p_1)z + (p_1 − p_2)z^2 + \ldots + (p_{n−1} − p_n)z^n + p_n z^{n+1}| < (p_0 − p_1) + (p_1 − p_2) + \ldots + (p_{n−1} − p_n) + p_n = p_0$$

which implies that $p(z) \neq 0$ in that case also.
4. (a) A very elegant elementary geometry proof is as follows: Suppose \(\pi, \pi' \subset \mathbb{R}^3 \) are planes that meet in some line \(\ell_0 \) and let \(\pi_m \) be the plane through \(\ell_0 \) which bisects the angle between \(\pi, \pi' \). Now suppose \(\ell \) is a line perpendicular to \(\pi_m \). Then it is clear that any two other planes \(A, B \) which meet in \(\pi_m \) intersect at the same angle in \(\pi \) as they do in \(\pi' \). Alright? Now apply this to the stereographic projection as follows: \(\pi \) is the plane \(\{ x_3 = 0 \} \), and \(\pi' \) the tangent plane to \(S^2 \) at \(X \in S^2 \). Then consider the line \(\ell \) through the north pole \((0, 0, 1)\) and the point \(X \). Convince yourself by means of a figure that \(\ell \) is perpendicular to the bisector of \(\pi \) and \(\pi' \). You can of course assume that \(x_2 = 0 \), say, so that everything reduces to a planar figure.

(b) Let \(Z = (x_1, x_2, x_3) = \Phi^{-1}(z) \) and \(W = (y_1, y_2, y_3) = \Phi^{-1}(w) \) so that
\[
|Z - W|^2 = 2 - 2(x_1y_1 + x_2y_2 + x_3y_3)
\]
Now express \(Z \) via \(z \) as in class:
\[
x_1 = \frac{z + \bar{z}}{1 + |z|^2}, \quad x_1 = \frac{-i(z - \bar{z})}{1 + |z|^2}, \quad x_1 = \frac{|z|^2 - 1}{1 + |z|^2}
\]
and similarly for \(W \) and \(w \) to arrive at
\[
d(z, w) = |Z - W| = \frac{2|z - w|}{\sqrt{(1 + |z|^2)(1 + |w|^2)}}
\]

(c) By definition, a circle \(\gamma \) in \(S^2 \) is the intersection of \(S^2 \) with a plane
\[
x_1\xi_1 + x_2\xi_2 + x_3\xi_3 = k
\]
Without loss of generality, \(\xi_1^2 + \xi_2^2 + \xi_3^2 = 1 \). In other words, the normal vector \((\xi_1, \xi_2, \xi_3) \) corresponds to a point \(w \in \mathbb{C} \) under stereographic projection (we can assume that \(\xi_3 \neq 1 \) for otherwise \(\gamma \) is the equator which goes to itself). Then by part (b) we see that \(d(z, w) = \text{const on } \gamma \). Using the formula for \(d(z, w) \) from above we see that for fixed \(w \), the locus of points \(z \) for which \(d(z, w) \) is some given constant is a circle (or line). A line is obtained iff \((0, 0, 1) \in \gamma \).

5. This is done in steps: first translate, then dilate, and translate again. For the second one you also need an inversion. For the final two maps observe that the circles intersect at a right angles at both intersection points. Now choose a Möbius transformation that takes \(0 \mapsto 0 \) and the second intersection point to \(\infty \) and follow it by a rotation as needed. For the final example, observe that the circles intersect at angle 60°. So a Möbius transform will take the almond shaped intersection onto the sector \(0 < \text{Arg } z < \frac{\pi}{3} \). Now map this by a power \(z \mapsto z^\alpha \) onto the first quadrant.
6. Clearly, 0 = \sum_{j=1}^n m_j(z_j - z) so that wlog z = 0. A line \ell through the origin is of the form \text{Re} (ze^{i\theta}) = 0 for some \theta \in [0, 2\pi). Since

\[0 = \sum_{j=1}^n m_j \text{Re} (z_j e^{i\theta}) \]

and all \(m_j > 0 \) we see that unless \(\text{Re} (z_j e^{i\theta}) = 0 \) for all \(j \) (and thus all \(z_j \in \ell \)) , necessarily \(\text{Re} (z_j e^{i\theta}) > 0 \) for some \(j \), as well as \(\text{Re} (z_j e^{i\theta}) < 0 \) for others. This is equivalent with the separation property.

7. (a) True; let \(z_j = x_j + iy_j \). Then \(\sum_j x_j \) converges and since the terms are positive, also \(\sum_j x_j^2 \) converges, and since \(\sum_j (x_j^2 - y_j^2) \) converges, therefore \(\sum_j y_j^2 \) converges; hence, finally, \(\sum_j (x_j^2 + y_j^2) \) converges.

(b) True. Take \(z_j = \frac{e^{2\pi i j\theta}}{\log(1+j)} \) where \(\theta \) is irrational. The absolute divergence is clear. For the convergence, observe that for any positive integer \(k \),

\[\sup_n \left| \sum_{j=1}^n e^{2\pi i j k\theta} \right| < \infty \]

Hence, "summation by parts" produces an absolutely convergent series since the logarithms yield (under the difference operation) a term of the form

\[\frac{1}{j(\log(j+1))^{k+1}} \]

which is summable for any \(k \geq 1 \).

8. We seek a function \(f(x, y) = u + iv \) with the property that \(v(x, y) = -v(x, -y) \). In particular, \(v = 0 \) on the real axis. Then

\[2u(x, y) = f(z) + f(\bar{z}) = \frac{(z + \bar{z})(1 + z\bar{z})}{1 + z^2 + \bar{z}^2 + z^2\bar{z}^2} = \frac{z}{1 + z^2} + \frac{\bar{z}}{1 + \bar{z}^2} \]

Hence \(f(z) = \frac{z}{1 + z^2} \) is what we were after.

9. Writing \(z = re^{i\theta} \) we see that

\[w = \frac{1}{2} (r + r^{-1}) \cos \theta + \frac{i}{2} (r - r^{-1}) \sin \theta \]

Hence, for fixed 0 < \(r < 1 \) we obtain an ellipse for \(w = x + iy \) of the form

\[1 = \frac{x^2}{a^2} + \frac{y^2}{b^2}, \quad a = a(r) = \frac{1}{2} (r + r^{-1}), \quad b = b(r) = \frac{1}{2} (r^{-1} - r) \]

It passes through the points \((\pm a, 0)\) and \((0, \pm b)\). Clearly, \(a(r) \) and \(b(r) \) are strictly decreasing as \(r \) increases from 0 to 1 and \(a(1) = 1, b(1) = 0 \). On the other hand, clearly \(a(0+) = b(0+) = \infty \). Hence, \(z \mapsto w \) is a map
that takes $|z| < 1$ injectively onto $\mathbb{C}_\infty \setminus [-1, 1]$. The half-rays $0 < r < 1$ for fixed θ are took onto hyperbolas which are perpendicular to the family of ellipses by conformality.

By the preceding, the circle $|z| = 1$ is taken onto the segment $[-1, 1]$. On the exterior $|z| > 1$ the behavior is deduced from the one on $|z| < 1$ by inversion $z \mapsto z^{-1}$ which leaves the map invariant.

10. (a) The condition is clearly sufficient. Now suppose that $T(\mathbb{R}_\infty) = \mathbb{R}_\infty$. Hence $T(0) = x_1, T(1) = x_2, T(\infty) = x_3$ where $x_1, x_2, x_3 \in \mathbb{R}_\infty$. But then

$$T^{-1}(z) = [z : x_1 : x_2 : x_3]$$

has real coefficients and therefore so does T.

(b) $w = \frac{z + 1}{z + i}$ takes $z \in \mathbb{R}_\infty$ onto $|w| = 1$. Conversely, $z = i \frac{1 + w}{1 - w}$ takes $|w| = 1$ onto $z \in \mathbb{R}_\infty$. Using the result from (a), we therefore see that the most general T with $T(T) = T$ is of the form

$$i \frac{1 + w}{1 - w} = \frac{a - ib + z(a + ib)}{c - id + z(c + id)}, \quad a, b, c, d \in \mathbb{R}$$

By algebra, this reduces to, with $|\zeta| = 1$,

$$w = \zeta \frac{z - z_0}{1 - \bar{z}_0 z}$$

(12.1)

where $z_0 = \frac{b + c + i(a - d)}{b - c - i(a + d)}$ with $a, b, c, d \in \mathbb{R}$. Note that any $z_0 \in \mathbb{C}$ can be written in this form and (12.1) is the most general representation of T. Conversely, with $z_0 \in \mathbb{C}$ arbitrary, any T as in (12.1) takes T onto itself.

(c) Such a T has to be amongst those from part (b) and thus of the form (12.1). Clearly, the necessary and sufficient condition here is $|z_0| < 1$. See also 1, (b).

11. a) This is called Schwarz lemma. Apply the maximum principle to $g(z) = f(z) \in \mathcal{H}(\mathbb{D})$. Then $|g(z)| \leq 1$ on \mathbb{D} and we would need to have $g = \text{const} = e^{i\theta}$ if $|g(z)| = 1$ anywhere. Since $g(0) = f'(0)$ we are done.

b) This is called Schwarz-Pick lemma. It is reduced to part (a) by two fractional linear transformations: on the domain, T sends $\mathbb{D} \rightarrow \mathbb{D}$ with $z_1 \mapsto 0$, and on the image, S sends $\mathbb{D} \rightarrow \mathbb{D}$ with $w_1 = f(z_1) \mapsto 0$. Thus,

$$T(z) = \frac{z - z_1}{1 - \bar{z}_1 z}, \quad S(w) = \frac{w - w_1}{1 - \bar{w}_1 w}$$

and $F = S \circ f \circ T^{-1} : \mathbb{D} \rightarrow \mathbb{D}$ with $F(0) = 0$. Now apply part (a).

12. If $f'(z_0) = 0$, then in a small neighborhood of z_0 the function is n-to-one for some $n \geq 2$. This cannot be. The openness of $f(\Omega)$ follows from Corollary 1.19. Clearly, f^{-1} is conformal since f is (for this we need $f' \neq 0$). Hence f^{-1} is holomorphic on $f(\Omega)$.
b) For \(D \), we may assume that \(f(0) = 0 \) after composition with a fractional linear transformation. Then \(|f'(0)| \leq 1 \) by the Schwarz lemma. Looking at \(f^{-1} \) we see that also \(|f'(0)| \geq 1 \). In conclusion, \(f \) needs to be a rotation. Thus the automorphisms are exactly the fractional linear transformation \(\mathbb{D} \to \mathbb{D} \), see HW set #1, 9(b).

Reduce \(\mathbb{H} \) to \(\mathbb{D} \) by a fractional linear transformation. Hence the automorphisms are all fractional linear transformations which preserve \(\mathbb{H} \); by HW set #1 they are of the form \(\frac{az + b}{cz + d} \) with \(a, b, c, d \in \mathbb{R} \) with \(ad - bc > 0 \).

Finally, on all of \(\mathbb{C} \): they have to be of the form \(a + bz \), \(a, b \in \mathbb{C} \). You can see this easily by viewing the automorphisms as an entire function \(f(z) \) with \(f(0) = 0 \) (wlog) and the considering the function \(\frac{1}{f(z)} \).

13. (a) First, check that the plane and disk model are isometric via the fractional linear map \(w = \frac{z - i}{z + i} : \mathbb{H} \to \mathbb{D} \). Since \(\text{Im} z = \frac{1 - |w|^2}{1 - w \bar{w}} \) it follows that

\[
\frac{1}{(\text{Im} \, z)^2} \, dz \, d\bar{z} = \frac{4}{(1 - |w|^2)^2} \, dw \, d\bar{w}
\]

as claimed. So we can work with the disk model, say. Now note that inequality (11.2) exactly means that a conformal map does not increase length in the tangent space. Therefore, it does not increase the length of curves or the distance of points.

(b) Arguing as in part (a), we see that an isometry needs to attain equality in (11.2) everywhere. In particular, by 1(b) it has to be a fractional linear transformation. Conversely, any such map attains equality in (11.2) everywhere. Hence, the isometries are precisely the automorphisms of \(\mathbb{D} \) or \(\mathbb{H} \) from above.

(c) Work with the \(\mathbb{H} \) model. It is clear that all vertical lines are geodesics since the metric does not depend on \(x = \text{Re} \, z \). All other geodesics are obtained from this one by applying the group of isometries, i.e., the automorphisms (why?). Since those are conformal in \(\mathbb{C}^\infty \), the geodesics are circles (or vertical lines) that meet \(\mathbb{R} \) at a right angle.

As far as Gaussian (=sectional) curvature is concerned, it is easy to see that it must be constant; indeed, it is a metric invariant (teorema egregium by Carl G.). Since the isometries act transitively, the Gaussian curvature agrees with the value at zero (in \(\mathbb{D} \)) which you can compute (I think things are normalized so that it comes out as \(-1\)). For the full curvature tensor you need to compute Cristoffel symbols, which I leave to you.

14. The idea is the compose \(f \) with a fractional linear transformation which takes the right-hand plane onto \(\mathbb{D} \) so that \(a \mapsto 0 \). Thus, set \(Tw = \frac{w - a}{w + a} \) and consider \(g = T \circ f \). Then \(|g'(0)| \leq 1 \) with equality iff \(g \) is a rotation (\#1(a)). This is equivalent to \(|f'(0)| \leq 2a \) with equality iff \(f(z) = a \frac{1 + e^{i\theta}z}{1 - e^{i\theta}z} \).
15. Use Morera’s theorem. Thus, suppose that \(\oint_{\partial T} f(z) \, dz \neq 0 \) for some triangle \(T \subset \Omega \). Then decompose \(T \) into 4 triangles \(T_j^{(1)} \) by connecting the mid-points of each side. Repeat this to obtain a nested sequence \(T_j^{(n)} \) of triangles whose diameters decrease like \(2^{-n} \), and thus converge to some point \(z_0 \in \Omega \), and such that for some \(\varepsilon > 0 \)

\[
\left| \oint_{T_j^{(n)}} f(z) \, dz \right| > 4^{-n}\varepsilon \quad \forall \, n \geq 1 \quad (12.2)
\]

To obtain a contradiction, expand \(f \) around \(f(z_0) \):

\[
f(z) = f(z_0) + f'(z_0)(z - z_0) + o(|z - z_0|)
\]

The left-hand side of (12.2) would need to be \(o(4^{-n}) \), which is our desired contradiction.

16. Follows from the maximum principle applied to the function

\[
F(z) = f(z) \prod_{j=1}^{m} \frac{1 - \bar{z}_j z}{z - z_j} \in \mathcal{H}(\mathbb{D})
\]

Indeed, we see that for any \(|z| < 1 \),

\[
|F(z)| \leq M \lim_{r \to 1^-} \sup_{|\zeta| = r} \prod_{j=1}^{m} \left| \frac{1 - \bar{z}_j \zeta}{\zeta - z_j} \right| = M
\]

(b) Suppose \(f(0) \neq 0 \). Then from part (a)

\[
0 < |f(0)| \leq M \prod_{j=1}^{\infty} |z_j| = M \prod_{j=1}^{\infty} (1 - (1 - |z_j|))
\]

so that \(\sum (1 - |z_j|) < \infty \). If \(f(0) = 0 \), then one can move a point \(z_0 \) where \(f(z_0) \neq 0 \) to zero by means of an automorphism

\[
w = Tz = \frac{z - z_0}{1 - \bar{z}_0 z}
\]

All you need to check is that for some constant \(C = C(z_0) \),

\[
C^{-1} \leq \frac{1 - |w|}{1 - |z|} \leq C
\]

uniformly in the disk. This would then show that \(\sum (1 - |Tz_j|) < \infty \) is the same as \(\sum (1 - |z_j|) < \infty \), as desired.

Alternatively, and somewhat more elegantly, apply part (a) to the function \(g(z) = z^{-\nu} f(z) \) where \(\nu \) is the order of vanishing at \(z = 0 \). Then \(g \in \mathcal{H}(\mathbb{D}) \) is bounded on \(\mathbb{D} \) and vanishes at the same points as \(f \) as long as they are different from zero. Thus, we can argue as before.
17. If \(\omega(z_j) = 0 \), then

\[
P(z_j) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z_j} \, d\zeta = 0
\]

by Cauchy. So the minimal choice for \(\omega \) is \(\omega(z) = \prod_{j=1}^{n} (z - z_j) \). By inspection, \(P \) has degree at most \(n - 1 \).

18. We will not give detailed arguments for each integral, but rather show how to divide these integrals into classes accessible by the same “trick”. The reader should verify for herself or himself that the residue theorem does indeed give the stated result in each case.

- \(R(x) \) is rational without poles on \(\mathbb{R} \) and decaying at least like \(x^{-2} \). Then provided \(a \geq 0 \),

\[
\int_{-\infty}^{\infty} e^{iax} R(x) \, dx = 2\pi i \sum_{\text{Im} \, \zeta > 0} e^{ia\zeta} \text{res}(R; \zeta)
\]

where the sum is over the residues; if \(a \leq 0 \) then we need to sum over all residues in the lower half plane.

- If \(R(x) \) is a rational function with a simple pole at \(\infty \) and no poles on \(\mathbb{R} \) up to finitely many simple poles \(\{x_j\}_{j=1}^{p} \subset \mathbb{R} \), then

\[
\text{P.V.} \int_{-\infty}^{\infty} e^{ix} R(x) \, dx = 2\pi i \sum_{\text{Im} \, \zeta > 0} \text{res}(R; \zeta) + \pi i \sum_{j=1}^{p} \text{res}(R; x_j)
\]

An example would be \(\text{P.V.} \int_{-\infty}^{\infty} \frac{e^{ix}}{x} \, dx = \pi i \) which has a principle value both around \(x = 0 \) and \(x = \pm \infty \).

- Let \(0 < \alpha < 1 \) and let \(R(x) \) be rational, decaying like \(x^{-2} \) at \(\infty \), is analytic at \(0 \) or has a simple pole there, and has no poles on \(x > 0 \). Then

\[
\int_{0}^{\infty} x^{\alpha} R(x) \, dx = \frac{2\pi i}{1 - e^{2\pi i\alpha}} \sum_{\zeta \in \mathbb{C} \setminus \{0, \infty\}} \text{res}(z^{\alpha} R(z); \zeta)
\]

To see this apply the residue theorem to the key-hole contour in \(\mathbb{C} \setminus \{0, \infty\} \).

- For a rational function in cosine and sine compute

\[
\int_{0}^{2\pi} R(\cos \theta, \sin \theta) \, d\theta = -i \oint_{|z|=1} R\left(\frac{1}{2}(z + z^{-1}), \frac{1}{2i}(z - z^{-1})\right) \frac{dz}{z}
\]

\[
= \oint_{|z|=1} Q(z) \, dz = 2\pi i \sum_{|\zeta| < 1} \text{res}(Q; \zeta)
\]
• If \(R(x) \) is even without poles on \(\mathbb{R} \), then
\[
\int_0^\infty R(x) \log x \, dx
\]
is computed by means of a semi circular contour with a bump around zero.

19. First,
\[
4i \int_0^{\frac{\pi}{2}} \frac{x \, d\theta}{x^2 + \sin^2 \theta} = \int_{-\pi}^{\pi} \frac{ix \, d\theta}{\sin^2 \theta + x^2} = \int_{-\pi}^{\pi} \frac{d\theta}{\sin \theta - ix} = \oint_{\gamma} \frac{2dz}{z^2 + 2xz - 1}
\]
where \(\gamma \) is the unit circle and \(z = e^{i\theta} \). Inside the contour there is exactly one simple pole \(z_0 = -x + \sqrt{1 + x^2} \) so that the integral equals
\[
\frac{4\pi i}{z_0 + z_0^{-1}} = \frac{2\pi i}{\sqrt{1 + x^2}}
\]

b) Write
\[
\int_0^{2\pi} (1 + 2 \cos \theta)^n e^{i n \theta} \, d\theta = \frac{1}{i} \oint_{\gamma} \frac{(1 + z + z^2)^n}{(1 - r)(1 - r z)(1 + z^2)} \, dz,
\]
with \(\gamma \) being the unit circle. We may assume \(r \neq 0 \). If \(-1 < r < \frac{1}{3} \), then the zeros of the quadratic polynomial in the denominator are separated by \(\gamma \). Now conclude by means of the residue theorem.

20. Use Morera’s theorem; clearly, \(F \) is continuous. To check that \(\int_{\Delta} F = 0 \) for any triangle \(\Delta \subset G \cup G^- \) we only need to check that case where the triangle \(\Delta \) intersects the real axis. Then \(\Delta = \Delta^+ \cup \Delta^- \) where \(\Delta^+ = \Delta \cap \mathbb{H} \) and \(\Delta^- = \Delta \cap (-\mathbb{H}) \). Finally,
\[
\int_{\Delta} F = \int_{\Delta^+} F + \int_{\Delta^-} F = 0
\]
by the analyticity of \(F \) in both halves (note that \(z \mapsto \overline{f(z)} \) is analytic as can be seen from power-series, for example).

b) Use reflection across the boundary of the circle. In analogy with part (a), this means defining
\[
F(z) = \begin{cases}
 f(z) & z \in \mathbb{D} \\
 \frac{1}{f(\frac{1}{\overline{z}})} & z \in \mathbb{C} \setminus \mathbb{D}
\end{cases}
\]
As in part (a), this can be checked to be analytic everywhere (after all, reflection is conformal up to a change of orientation - but we are changing the orientation twice – once in the domain and another time in the image – so the end result is truly conformal). Since it’s also bounded, it is constant as claimed.

21. Suppose \(f(z) \) was such a bi-holomorphic map

\[
f : \{0 < |z| < 1\} \to \{\frac{1}{2} < |z| < 1\}.
\]

Then \(f \) has an isolated singularity at \(z = 0 \). Since it is bounded it thus has a removable singularity at \(z = 0 \) which implies that \(f \) extends to a map \(F \in \mathcal{H}(\mathbb{D}) \). If \(F'(0) = 0 \) then \(F \), and thus also \(f \), are \(n \)-to-one for some \(n \geq 2 \) in a small neighborhood \(0 < |z| < \delta \) (that’s a theorem from class). Thus \(F'(0) \neq 0 \), and we see that \(F \) has to be one-to-one locally around \(z = 0 \) (same theorem from class). Let \(w_0 = F(0) \). Clearly, \(w_0 \in \{\frac{1}{2} \leq |z| \leq 1\} \).

If \(\frac{1}{2} < |w_0| < 1 \), then \(w_0 = f(z_0) \) for some \(0 < |z_0| < 1 \). But then a small disk around \(z_0 \) is mapped by \(f \) onto a small open neighborhood \(U \) of \(w_0 \); but \(F^{-1}(U) \) contains a small disk around \(z = 0 \) as well, which would contradict that \(f \) is one-to-one. Hence \(|z_0| = \frac{1}{2} \) or \(|z_0| = 1 \). However, this is clearly a contradiction to \(F(\mathbb{D}) \) being open.

22. Use the argument principle on the closed curve given by \(\partial(G_0 \cap \{\text{Re} z \leq N\}) \) and let \(N \to \infty \). In other words, show that the index of the image of this curve under the map \(f \) is one for every point in the right half-plane when \(N \to \infty \).

23. Use Rouche’s theorem with \(f(z) = \lambda - z \) and \(g(z) = -e^{-z} \). Then \(|g| < |f| \) on the contour \(-R \leq y \leq R\) joined with \(|z| = R\) as \(R \to \infty \).

24. (a) There is a pole of order two at \(z_0 = 1 \) and one of order one at each of \(z_1 = (-1 + i\sqrt{3})/2 \), and \(z_2 = (-1 - i\sqrt{3})/2 \). Moreover, \(r(\infty) = 0 \). Hence

\[
r(z) = \frac{a_0}{(z-1)^2} + \frac{a_1}{z-1} + \frac{a_2}{z-z_1} + \frac{a_3}{z-z_2} \quad (12.3)
\]

The numbers \(a_1, a_2, a_3 \) are residues that you find as usual. Then \(a_0 \) is determined by evaluating at \(z = 0 \), for example. Obviously, there are other ways of finding these coefficients; for example, multiplying (12.3) by \((z-1)^2, z-1\) etc. and evaluating.

(b) In \(|z| < 1\), write

\[
\frac{1}{z(z-1)(z-2)} = \frac{1}{z} \left(\frac{1}{z-2} - \frac{1}{z-1} \right)
\]

and expand the term in parentheses in a power series around \(z = 0 \), convergent on \(|z| < 1\). Proceed analogously for the other annuli.
25. (a) You can differentiate under the integral sign or use Fubini and Morera. The point is of course that

\[\int_0^\infty e^{-t}t^{x-1}\,dt < \infty, \quad \forall \, x > 0 \]

The functional equation as well as the integer values you get by integrating by parts.

(b) Set \(\Gamma(z) = \frac{\Gamma(z+1)}{z} \) when \(\text{Re}\,z > -1 \) and \(z \neq 0 \). This gives an analytic continuation that agrees with \(\Gamma \) on \(\text{Re}\,z > 0 \) by part (a). Also, it has a simple pole at \(z = 0 \) with residue equal to one. Now iterate this procedure to continue to \(\text{Re}\,z > -n \) for each positive integer \(n \).

(c) Use the definition from (a) and write

\[\int_0^1 e^{-t}t^{a-1}\,dt = \int_0^1 \sum_{n=0}^\infty (-1)^n \frac{t^{n+z-1}}{n!}\,dt = \sum_{n=0}^\infty (-1)^n \frac{1}{n!(n+z)} \]

The convergence is not an issue since \(\text{Re}\,z > 0 \). Obviously, the integral in (11.4) defines an entire function and the sum is a meromorphic function with simple poles at \(-n \) where \(n \) is a nonnegative integer and the residue is \((-1)^{n+1} \) as desired.

(d) Use the key-hole contour in \(\mathbb{C} \setminus [0, \infty) \) which consists of a little circle of radius \(\epsilon > 0 \) around zero, a large circle of radius \(R \) around zero, as well as two segments that run along the cut at \([0, \infty) \) from \(\epsilon \) to \(R \) and back; the former as the limit of \(x + i\delta \), the latter as the limit of \(x - i\delta \) as \(\delta \to 0 \), respectively. The circles contributes \(O(\epsilon^{\text{Re}\,a}) \), and the large circle contributes \(O(R^{\text{Re}\,a-1}) \); so they go away in the respective limits. Finally, by the residue theorem (the integrand has a simple pole at \(z = -1 \))

\[2\pi i e^{\pi i(a-1)} = (1 - e^{2\pi i(a-1)}) \int_0^1 e^{-t}t^{a-1}\,dt \]

which gives the desired expression. It suffices to establish (11.6) for \(z \in (0, 1) \) by the uniqueness principle. Then

\[\Gamma(x)\Gamma(1-x) = \int_0^\infty e^{-y}y^{x-1} \left[y^{1-x} \int_0^\infty e^{-uy}u^{-x}\,du \right] dy \]

\[= \int_0^\infty \int_0^\infty e^{-y(1+u)} dy\,u^{-x}\,du = \int_0^\infty \frac{u^{-x}}{1+u} \,du \]

\[= \frac{\pi}{\sin \pi(1-x)} = \frac{\pi}{\sin \pi x} \]

as claimed. Since all integrands are positive and (jointly) continuous and therefore measurable, Fubini’s theorem applies. Since \(\Gamma(z) = \overline{\Gamma(z)} \), we conclude that

\[|\Gamma(1/2 + it)|^2 = \frac{2\pi}{e^\pi t + e^{-\pi t}} \]
(e) Write, with $\alpha, \beta > 0$,

$$\Gamma(\alpha)\Gamma(\beta) = \int_0^\infty \int_0^\infty e^{-t\alpha - s\beta} ds dt = \int_0^\infty \int_0^\infty e^{-t\alpha - \mu t (ut)^{\beta-1}} t du dt$$

$$= \int_0^\infty \int_0^\infty e^{-(1+u)t^{\alpha+\beta-1}} du = \Gamma(\alpha + \beta) \int_0^\infty \frac{u^{\beta-1}}{(1+u)^{\alpha+\beta}} du$$

$$= \Gamma(\alpha + \beta) \int_0^1 (1-s)^{\beta-1}s^{\alpha-1} ds$$

where we substituted $s = \frac{1}{1+u}$ in the final step. This result extends to $\text{Re}\alpha > 0$ and $\text{Re}\beta > 0$ by the uniqueness principle.

(f) For the cosine integral, write

$$\int_0^\infty t^{z-1} \cos t dt = \frac{1}{2} \int_0^\infty t^{z-1} e^{it} dt + \frac{1}{2} \int_0^\infty t^{z-1} e^{-it} dt$$

For the first integral on the right-hand side use a contour in the first quadrant with straight segments $[\varepsilon, R]$ and $[iR, i\varepsilon]$ joined by quarter-circles of radii ε and R, respectively. For the second, use the reflection of this contour about the real axis. Putting absolute values inside the integrals shows that the circular pieces contribute nothing as $\varepsilon \to 0$ and $R \to \infty$ (for this use that $0 < \text{Re} z < 1$). In conclusion, from Cauchy’s theorem,

$$\int_0^\infty t^{z-1} e^{it} dt = ie^{\pi i(z-1)/2} \int_0^\infty e^{-t} t^{z-1} dt = e^{\pi iz/2} \Gamma(z)$$

$$\int_0^\infty t^{z-1} e^{-it} dt = e^{-\pi iz/2} \Gamma(z)$$

which gives the desired conclusion.

For the sine integral proceed in the exact same fashion in the region $0 < \text{Re} z < 1$. To extend to the range $-1 < \text{Re} z < 1$, note that both the left, and right-hand sides are analytic in that region (actually, it’s enough to know this for one as it then follows for the other - why?). In fact, since $\sin t$ vanishes at $t = 0$ to first order, we can allow $\text{Re} z > -1$ without losing convergence of the integral at $t = 0$. So the left-hand side extends analytically to the left, whereas for the right-hand side just use that the pole of Γ at $z = 0$ is canceled by the zero of $\sin(\pi z)$. For the final two identities, make the specific choices of $z = 0$ and $z = -\frac{1}{2}$, respectively, in the sine integrals and use part (d).

(g) In the integral in (11.7) the exponential decay of e^w along γ beats any polynomial growth that may come from w^{-z}. Hence, the integral converges absolutely for any Hankel contour in $\mathbb{C} \setminus (-\infty, 0]$; using Fubini and Morera thus shows that

$$F(z) = \frac{1}{2\pi i} \int_\gamma e^w w^{-z} dw$$
is an entire function (use that w^{-z} is entire for any fixed $w \in \mathbb{C}^*$). Moreover, $F(z)$ does not depend on the particular choice of γ by Cauchy’s theorem.

Next, we argue that provided $\text{Re} \ z < 1$ we can deform γ into a contour that runs along the cut $(-\infty, 0]$ from below and returns to $-\infty$ by running along this cut from above. Thus, this contour is $-x-i0$ followed by $-x+i0$; in the former case, x goes from ∞ to 0, and in the latter, from 0 to ∞.

The only thing that needs to be checked in this deformation is that a little circle of radius $\varepsilon > 0$ around $w = 0$ does not contribute anything in the limit $\varepsilon \to 0$. Indeed, putting absolute values into the integral yields that such a circle contributes $O(\varepsilon^{1-\text{Re} z})$ and therefore vanishes in the limit since $\text{Re} z < 1$. For this use that $|w^{-z}| = e^{-\text{Re} (z \log w)} = |w|^{-\text{Re} z} e^{-\text{Im} z \text{Arg} w} \leq |w|^{-\text{Re} z} e^{2\pi |\text{Im} w|}$.

So if $|w| = \varepsilon$, then $|w^{-z}| \leq e^{-\text{Re} z \varepsilon^{2\pi |\text{Im} w|}}$.

The conclusion from all of this is the following: $\forall \text{Re} z < 1$,

$$F(z) = \frac{-e^{-\pi iz} + e^{\pi iz}}{2\pi i} \int_0^{\infty} e^{-x} x^{-z} \, dx = \frac{\sin(\pi z)}{\pi} \frac{\Gamma(1-z)}{\Gamma(z)} = \frac{1}{\Gamma(z)}$$

by (11.6) from part (d). Since F is entire, it follows that $\frac{1}{\Gamma(z)}$ is entire, too, and the identity which we just derived holds for all $z \in \mathbb{C}$. It is important to note that in this round about way we have shown that Γ never vanishes. Can you think of any other way of proving this latter property?

26. (a) The generating function is entire in ζ so the coefficients $J_n(z)$ are, too. Moreover, by the formula for computing Laurent coefficients,

$$J_n(z) = \frac{1}{2\pi i} \oint \frac{z}{\zeta^{n+1}} \exp \left(\frac{z}{2} (\zeta - \zeta^{-1}) \right) \frac{d\zeta}{\zeta^{n+1}}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \exp(-in\theta + z \sin \theta) \, d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \cos(n\theta - z \sin \theta) \, d\theta$$

$$= \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - z \sin \theta) \, d\theta$$

as claimed. Changing n to $-n$ and substituting $\theta + \pi$ for θ proves that $J_{-n} = (-1)^n J_n$.

(b) Simply differentiate (11.9) under the integral sign:

$$J_n'(z) = \frac{1}{\pi} \int_0^{\pi} \sin \theta \sin(n\theta - z \sin \theta) \, d\theta$$

$$= \frac{1}{\pi} \int_0^{\pi} (n - z \cos \theta) \cos \theta \cos(n\theta - z \sin \theta) \, d\theta$$
where we integrated by parts to get the second line. Also, differentiating the first line again in z yields,

$$J''_n(z) = -\frac{1}{\pi} \int_0^{\pi} \sin^2 \theta \cos(n\theta - z \sin \theta) \, d\theta$$

so that

$$z^2 J''_n(z) + z J'_n(z) + (z^2 - n^2) J_n(z)$$

$$= \frac{n}{\pi} \int_0^{\pi} (z \cos \theta - n) \cos(n\theta - z \sin \theta) \, d\theta$$

$$= \frac{n}{\pi} \int_0^{\pi} \frac{d}{d\theta} \sin(n\theta - z \sin \theta) \, d\theta = 0$$

For the second part, make the power series ansatz $w(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ with $z_0 \neq 0$. The coefficients a_0, a_1 are determined by the initial conditions $w(0)$ and $w'(0)$. Plugging this into the Bessel equation which we rewrite as

$$[(z - z_0)^2 + 2z_0(z - z_0) + z_0^2]w''(z) + [(z - z_0) + z_0]w'(z)$$

$$+ [(z - z_0)^2 + 2z_0(z - z_0) + z_0^2 - n^2]w(z) = 0$$

yields a recursion relation for the coefficients a_n. Crude estimates show that the solutions a_n of this recursion grow at most exponentially in n, so the power series will converge in some small disk around z_0, as desired.

Observe that the two solutions w_1, w_2 with $w_1(z_0) = w'_2(z_0) = 1$ and $w'_1(z_0) = w_2(z_0) = 0$ generate all solutions in a small disk around z_0: simply set

$$w(z) = w(z_0)w_1(z) + w'(z_0)w_2(z)$$

By the monodromy theorem this can be analytically continued (uniquely) to any simply connected region $G \subset \mathbb{C} \setminus \{0\}$. Hence w_1, w_2 are a fundamental system in all of G. At $z_0 = 0$ it is no longer possible to solve the Bessel equation for general initial data, and we can in general not continue analytically into the origin.

As for the final part, set $f(\zeta) = w(e^\zeta)$. Then locally around ζ_0 the function f satisfies the ODE

$$\frac{d^2}{d\zeta^2} f + (e^{2\zeta} - n^2) f = 0$$

which admits (by power-series) analytic solutions around every point. Hence, again by the monodromy theorem, $f(\zeta)$ can be continued to the entire plane as an entire function.
(c) From (11.8),
\[\sum_{\ell=0}^{\infty} \frac{1}{\ell!} \left(\frac{z}{2} \right)^{\ell} (\zeta - \zeta^{-1})^{\ell} = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \left(\frac{z}{2} \right)^{\ell} \sum_{k=0}^{\ell} \frac{(-1)^k \zeta^{2k-\ell}}{k!(\ell-k)!} = \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{(-1)^k \zeta^{2k-\ell}}{k!(\ell-k)!} \left(\frac{z}{2} \right)^{\ell} \left(\frac{\zeta}{\zeta} - 1 \right)^{\ell} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \chi(\ell-k=n) \left(\frac{z}{2} \right)^{\ell} \left(\frac{\zeta}{\zeta} - 1 \right)^{\ell} \zeta^{n} = \sum_{n=-\infty}^{\infty} J_n(z) \zeta^n \]
which gives the desired result. For negative integers use the relation
\[J_{-n}(z) = (-1)^n J_n(z). \]

(d) Simply derive a recursion relation and check that the coefficients you got in (c) are the only solution (up to a multiplicative constant). This is rather mechanical, and we skip it.

(e) The idea is to seek a solution of the form
\[J_0(z) = J_0(z) \log z + \sum_{n=0}^{\infty} b_n z^n \]
Simply observe that if \(w(z) \) is an analytic (around 0) solution of the Bessel equation with \(n = 0 \), then \(\tilde{w}(z) := w(z) \log z \) satisfies
\[z^2 \tilde{w}''(z) + z \tilde{w}'(z) + z^2 \tilde{w}(z) = 2zw'(z) \]
The right-hand side is analytic around 0, vanishes at \(z = 0 \), and is even. Hence, one can uniquely solve for \(b_n \); thus, \(b_0 = 0 \), and all \(b_n \) with \(n \) odd vanish. In fact, the patient reader will verify that
\[J_0(z) = J_0(z) \log z - \sum_{n=1}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{z}{2} \right)^{2n} \left[1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \right] \]
the usual notation for this is \(Y_0 \) which is the same up to some normalizations; after all, we can multiply by any nonzero scalar and add any multiple of \(J_0 \). A similar procedure works for all other \(J_n, n \geq 1 \). The reader is invited to check that \(J_\nu \) and \(J_{-\nu} \) with \(\nu \in \mathbb{C} \setminus \mathbb{Z} \) (as defined in part (f)) are linearly independent and thus a fundamental system for these \(\nu \).

A fundamental system for \(n \in \mathbb{Z} \) is then given by the limit (L’Hopital’s rule)
\[J_n(z), \quad \lim_{\nu \to n} \frac{J_\nu(z) \cos(\nu \pi) - J_{-\nu}(z)}{\sin(\nu \pi)} \]
The reader is invited to compute this for \(\nu = 0 \) and compare the result with \(J_0 \) above.

(f) Verifying the formulas for \(J_{\frac{1}{2}} \) and \(J_{\frac{3}{2}} \) requires nothing but #4, (d) (i.e., \(\Gamma(1/2) = \sqrt{\pi} \)) and a comparison with the power series of cosine and
sine. The fact that the definition of J_ν agrees with the previous one for nonnegative integers ν is evident. For the negative ones, use that $\frac{1}{\Gamma(z)} = 0$ at all $z \in \mathbb{Z}_0^-$. The reason that (11.9) does not yield a solution for non-integer ν is the integration by parts that was required for that purpose: we pick up non-zero boundary terms when ν is not an integer.

(g) This is proved by expanding the exponential into a power series and then by showing that you get the same series as in (11.12). Hence,

$$\frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \int_{-1}^{1} e^{izt} (1 - t^2)^{\nu - \frac{1}{2}} dt$$

$$= \sum_{n=0}^{\infty} \frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \int_{-1}^{1} \frac{(izt)^n}{n!} (1 - t^2)^{\nu - \frac{1}{2}} dt$$

$$= \sum_{n=0}^{\infty} \frac{(iz)^{2n}}{(2n)!} \frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \int_{0}^{1} t^{2n} (1 - t^2)^{\nu - \frac{1}{2}} dt$$

$$= \sum_{n=0}^{\infty} \frac{(z/2)^\nu}{\Gamma(\nu + \frac{1}{2})\sqrt{\pi}} \frac{(iz)^{2n}}{(2n)!} \frac{\Gamma(n + \nu + \frac{1}{2})}{\Gamma(n + \nu + 1)}$$

$$= (z/2)^\nu \sum_{n=0}^{\infty} \frac{(-1)^n (z/2)^{2n}}{n! \Gamma(n + \nu + 1)}$$

where we used that

$$\Gamma(n + 1/2) = \frac{(2n)!}{2^n n!} \sqrt{\pi}$$

(see the functional equation of Γ as well as $\Gamma(1/2) = \sqrt{\pi}$). The interchange of summation and integration is justified as follows: putting absolute values inside everything (by the same argument) yields a convergent power series that converges for every $z \in \mathbb{C}$.

To verify Bessel’s equation, differentiate under the integral sign (we skip this somewhat mechanical calculation).

(h) By (11.7),

$$\frac{1}{\Gamma(\nu + k + 1)} = \frac{1}{2\pi i} \int_{\gamma} e^w w^{-(\nu + k + 1)} dw$$

so that

$$J_\nu(z) = \frac{1}{2\pi i} \int_{\gamma} e^w (z/2)^\nu \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{2k}}{k!} w^{-(\nu + k + 1)} dw$$

$$= \frac{(z/2)^\nu}{2\pi i} \int_{\gamma} \exp \left(w - \frac{z^2}{4w} \right) dw^{\nu+1}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \exp \left(\frac{\zeta}{2} - \zeta^{-1} \right) d\zeta^{\nu+1}$$
where we substituted $\zeta^2 = w$ to pass to the last line. This proves (11.13).

Finally, to pass to (11.14) substitute $\zeta = e^\tau$ in the second line of (11.13).

(i) From (11.14),

$$J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{1}{2\pi i} \int_{\gamma} e^{z \sinh \tau - \nu \tau} 2 \cosh \tau \, d\tau$$

$$= \frac{2\nu}{z} \frac{1}{2\pi i} \int_{\gamma} e^{z \sinh \tau - \nu \tau} d\tau = \frac{2\nu}{z} J_{\nu}(z)$$

as well as

$$J_{\nu-1}(z) - J_{\nu+1}(z) = \frac{1}{2\pi i} \int_{\gamma} e^{z \sinh \tau - \nu \tau} 2 \sinh \tau \, d\tau = 2J'_{\nu}(z)$$

The second set of identities follows by adding and subtracting the two lines of the first one.

27. (a) Relate $\sum_{n=0}^{\infty} s_n z^n$ to $f(z)$ via the identity

$$f(z) = \sum_{n=0}^{\infty} s_n z^n \quad \text{or} \quad f(z) = (1 - z) \sum_{n=0}^{\infty} s_n z^n \quad (12.4)$$

Given any $M > 0$ one has $s_n \geq M$ for all $n \geq M$. From the second identity in (12.4), it follows immediately that

$$\limsup_{z \to 1} f(z) \geq M$$

and thus $f(z) \to \infty$ as $z \to 1^-$. We cannot talk about a pole as $\log(1 - z) = \sum_{n=1}^{\infty} \frac{1}{n} z^n$ shows.

(b) We can assume that $s = 0$. Given $\varepsilon > 0$, show that there exists $n_0 = n_0(\varepsilon)$ such that

$$\limsup_{z \to 1} \left| \sum_{n=n_1}^{n_2} a_n z^n \right| < \varepsilon$$

for all $n_2 > n_1 \geq n_0$. Here the lim sup is taken over $z \in K_\alpha \cap \mathbb{D}$ with $\alpha < \pi$ fixed. This is done by summing by parts (write $a_n = s_n - s_{n-1}$ and rearrange) and noting that K_α is characterized by

$$\sup_{z \in K_\alpha \cap \mathbb{D}} \frac{|1 - z|}{1 - |z|} = C_\alpha < \infty$$

(c) Consider $f(z) - \sum_{n=0}^{N} a_n$ where $N = [1/(1 - |z|)]$. Then

$$\left| \sum_{n=0}^{N} (1 - z^n) a_n \right| \leq |1 - z| \sum_{n=0}^{N} n |a_n| \leq C_\alpha N^{-1} \sum_{n=0}^{N} n |a_n| \to 0$$
as $z \to 1$ inside K_α. Furthermore,

$$\left| \sum_{n=N+1}^{\infty} a_n z^n \right| \leq \frac{1}{1-|z|} \sup_{n \geq N} |a_n| \leq \sup_{n \geq N} n|a_n| \to 0$$

as $N \to \infty$ or $z \to 1$ in K_α.

28. The map $w \mapsto z = aw^2 + bw^3$ takes D onto a region $\Omega \subset \mathbb{D}$ such that $\bar{\Omega} \cap \partial D = \{1\}$. Since $f(z)$ is assumed to be analytic in a neighborhood of $z = 1$, it follows that $g(w) = f(z)$ is given by a power series around $w = 0$ with radius of convergence $R' > 1$. Note that

$$g(w) = \sum_{n=0}^{\infty} a_n (aw^2 + bw^3)^{2^n}$$

Upon expanding and then deleting the parentheses every power of w occurs at most once in the entire series since $2^{n+1} > 3.2^n$. Therefore, the power series of g is exactly the one which is obtained by this process. However, since we can always introduce parentheses in a convergent series without destroying convergence, we conclude that the power series of f would need to converge for some $z > 1$ which it cannot. The generalization to other gap series is obvious.

29. (a) Given $\delta > 0$, there exists $K \subset \mathbb{T}$ compact with $|K| = 0$ and $|\mu|(\mathbb{T} \setminus K) < \delta$. Decompose μ as follows: for all Borel sets $E \subset \mathbb{T}$,

$$\mu(E) = \mu(E \cap K) + \mu(E \setminus K) =: \mu_1 + \mu_2$$

Then $|\mu_2| < \delta$ and evidently for all $x \in \mathbb{T} \setminus K$,

$$\lim_{|I| \to 0} \frac{\mu_1(I)}{|I|} \to 0 \quad \text{as} \quad |I| \to 0, \ x \in I$$

Thus, it follows from the weak L^1 boundedness of the Hardy–Littlewood maximal function that

$$\left| \left\{ x \in \mathbb{T} \mid \lim_{|I| \to 0, x \in I} \frac{\mu(I)}{|I|} > \gamma \right\} \right| \leq \frac{6}{\gamma} \delta$$

for each $\gamma > 0$. Letting $\delta \to 0$ and then $\gamma \to 0$, we see that the left–hand side vanishes as claimed.

(b) It suffices to show that $\Psi_n * \mu \to 0$ almost everywhere for any $d\mu \perp d\theta$, $\mu \geq 0$. As above, we split μ into two pieces: μ_1, which is supported on K, $|K| = 0$, and μ_2 which has mass at most δ. For μ_1, we note that $\lim_{n \to \infty} \Psi_n * \mu_1 = 0$ on $\mathbb{T} \setminus K$ because of (11.15). The limit in the case of μ_2 is dominated by the Hardy–Littlewood maximal function and estimated as in part (a); first send $\delta \to 0$ and then $\gamma \to 0$.
30. (a) Derive (11.16) as follows: using 25 (e) show that
\[
\frac{\Gamma(z-h)\Gamma(h)}{\Gamma(z)} = \frac{1}{h} + \int_0^1 \frac{((1-t)^{z-1} - 1)}{t} \ dt + o(1)
\]
as \(h \to 0\). Indeed, with \(\mathrm{Re} \ z > 0\),
\[
\frac{\Gamma(z-h)\Gamma(h)}{\Gamma(z)} = \int_0^1 (1-t)^{z-h-1}t^{h-1} dt = \frac{1}{h} + \int_0^1 [(1-t)^{z-1} - 1]t^{h-1} dt
\]
as claimed. To pass to the last line simply note that the second integral above is continuous at \(h = 0\). Since
\[
\frac{\Gamma(z-h)\Gamma(h)}{\Gamma(z)} = \frac{(\Gamma(z) - h\Gamma'(z)) + O(h^2))(h^{-1} + A + O(h))}{\Gamma(z)}
\]
we obtain (11.16) by equating the terms constant in \(h\). To pass to (11.17), expand
\[
\frac{dt}{t} = \frac{1}{1 - (1-t)} = \sum_{n=0}^{\infty} (1-t)^n dt
\]
Inserting this into (11.16) and integrating term-wise yields (11.17).
For (b), note that \(\frac{\Gamma'(z)}{\Gamma(z)} = \frac{d}{dz} \log \Gamma(z)\). This determines (11.18) up to the value of \(\gamma\). To find \(\gamma\), set \(z = 1\) in (11.18) and notice that
\[
\gamma = \lim_{N \to \infty} \sum_{n=1}^{N} \left[\frac{1}{n} - \log \left(1 + \frac{1}{n}\right) \right] = \lim_{N \to \infty} \left[\sum_{n=1}^{N} \frac{1}{n} - \log(N+1) \right]
\]
as claimed.
For (c), write (11.18) as a limit and simplify using the limiting expression for \(\gamma\).
31. (a) Since \(|a| > |b|\),
\[
Tz := \frac{az + b}{bz + \bar{a}}
\]
(12.5) takes 0 into \(\mathbb{D}\) and \(\partial \mathbb{D}\) onto \(\partial \mathbb{D}\). Thus, \(T \in \text{Aut}(\mathbb{C})\). Alternatively, compute
\[
1 - |Tz|^2 = (1 - |z|^2)|T'z|
\]
which implies that \(|Tz| < 1\) iff \(|z| < 1\). Conversely, suppose \(S \in \text{Aut}(\mathbb{D})\) with \(|S(0)| < 1\). Choose \(a, b\) with
\[
S(0) = -\frac{b}{a} \quad |a|^2 - |b|^2 = 1
\]
and let T be as in (12.5). Then $R := T \circ S \in \text{Aut}(\mathbb{D})$ with $R(0) = 0$. By Schwarz’s lemma, $|R(z)| \leq |z|$ and the same holds for R^{-1}. Hence, we have $R(z) = e^{i\theta}z$ and we are done. Alternatively, suppose $Sz = \frac{az+b}{cz+d}$ with $ad - bc = 1$ preserve D. Or, equivalently, $|ae^{i\theta} + b| = |ce^{i\theta} + d| \quad \forall \theta \in \mathbb{R}, \quad |b| < |d|

which is the same as

$$|a|^2 + |b|^2 = |c|^2 + |d|^2, \quad ab = cd, \quad ad - bc = 1, \quad |a| > |c|, \quad |b| < |d|$$

This is easily seen to amount to $d = \bar{a}, c = -\bar{b}$ as claimed. That the map (11.19) defines an isomorphism of groups is a mechanical verification.

(b) One approach is to use the chordal metric $d(z, w)$ from Problem 4 and to verify that it is preserved iff T is represented by an element of $SU(2)$. This amounts to

$$\frac{2|z - w|}{(1 + |z|^2)^{1/2}(1 + |w|^2)^{1/2}} = \frac{2|Tz - Tw|}{(1 + |Tz|^2)^{1/2}(1 + |Tw|^2)^{1/2}}$$

or, letting $z \to w$,

$$1 + |Tz|^2 = (1 + |z|^2)|Tz|$$

An explicit calculation as in part (a) shows that this is the same as

$$a\bar{b} + c\bar{d} = 0, \quad |a|^2 + |c|^2 = |b|^2 + |d|^2 = 1, \quad ad - bc = 1$$

which in turn implies that $\bar{a} = d, c = -\bar{b}$ as desired.

The homomorphism Q from $SU(2)$ onto $SO(3)$ is

$$A \mapsto T_A \mapsto \Phi^{-1} \circ T_A \circ \Phi$$

where $A = \begin{bmatrix} a & \bar{b} \\ b & -\bar{a} \end{bmatrix}$ and Φ is the stereographic projection from Problem 4. With some patience the reader will verify that the unit quaternion $a = \cos(\omega/2) + \sin(\omega/2)(x_1i + x_2j + x_3k), \quad 0 < \omega < 2\pi, \quad x_1^2 + x_2^2 + x_3^2 = 1$

is a rotation around the axis (x_1, x_2, x_3) by the angle ω. One should think of \mathbb{R}^3 as the imaginary quaternions (those are the quaternions with vanishing real part). If a is the unit quaternion from above, and u an imaginary one, then $u \mapsto au\bar{a}$ is again imaginary and is precisely the aforementioned rotation in \mathbb{R}^3.

32. There are two crucial points here: first, although in general a harmonic function on an annulus does not have a conjugate harmonic function this failure is "one-dimensional" (compare this to $H^1(\mathbb{R}^2 \setminus \{0\}) \simeq \mathbb{R}$ in the sense of de Rham cohomology - try proving this fact with multivariable calculus). More precisely, if we subtract a multiple of $\log r = \log |z|$ then it is possible
to find the conjugate harmonic function. Second, \(u(z) = \log r = \log |z| \) is the only nonconstant radial harmonic function with \(u(1) = 0, u_r(1) = 1 \).

(a) Choose \(k \) such that \(u - k \log r \) has a conjugate harmonic function. This happens iff the vector field

\[
(-u_y, u_x) - k\left(-\frac{y}{r^2}, \frac{x}{r^2}\right)
\]

is conservative, i.e., is of the form \(\nabla v \) (cf. the proof of Proposition 1.25). This in turn is the same as requiring that

\[
k = \frac{1}{2\pi} \oint_{|z|=r} -u_y \, dx + u_x \, dy
\]

Hence, with this choice of \(k \),

\[
u(z) - k \log |z| = \text{Re} f(z), \quad f \in \mathcal{H}(\mathcal{A})
\]
as claimed. Second, the mean value

\[
\frac{1}{2\pi} \int_0^{2\pi} \text{Re} f(re^{i\theta}) \, d\theta = \text{Re} \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z} \, dz
\]
does not depend on \(r \in (r_1, r_2) \) by Cauchy. In particular, if \(r_1 = 0 \) and \(u \) remains bounded as \(z \to 0 \), then it follows that \(k = 0 \).

(b) This is an immediate consequence of (a) and the simple connectivity; indeed, locally around each point \(z_1 \in \Omega \) the harmonic function

\[
u(z) - \log |z - z_0| = \text{Re} f(\cdot, z_1)
\]
where \(z \mapsto f(z, z_1) \) is analytic on some small disk around \(z_1 \). Second, if the domains of \(f(\cdot, z_1) \) and \(f(\cdot, z_2) \) overlap, then these functions differ by an imaginary constant. Applying the monodromy theorem shows that

\[
u(z) - \log |z - z_0| = \text{Re} g, \quad g \in \mathcal{H}(\Omega)
\]

Define \(f(z) = (z - z_0)e^{g(z)} \). It is clear that this has the desired properties \(u = \log |f| \) etc.).

33. (a) By assumption, we can write \(u = \phi(v) \). Then \(\Delta u = 0 = \phi''(v)|\nabla v|^2 \) so that \(\phi \) is linear. Hence, there is an affine relation between \(u \) and \(v \).

(b) Let \(\bar{u} \) be the conjugate harmonic function of \(u \) locally around \(z_0 \) normalized so that \(\bar{u}(z_0) = 0 \). Then apply (a) to \(v \) and \(\bar{u} \) to conclude that

\[
v = c_0 \bar{u} + c_1 = c_0 \bar{u} + v(z_0)
\]
Since \(|\nabla u(z_0)| = |\nabla \bar{u}(z_0)| = |\nabla v(z_0)| \), it follows that \(c_0 = \pm 1 \). Hence, \(u \equiv iv \) is conformal as claimed.
34. (i) Suppose $u(z) > M$ for some $z \in \Omega$. Then $\sup_{\Omega} u$ is attained in Ω. By the SMVP it follows that the set $\{z \in \Omega \mid u(z) = M\}$ is open. Since it is clearly closed, it equals Ω. Hence $u = M$ contradicting the definition of M.

(ii) Apply (i) to $u - h$.

(iii) Clear from the SMVP.

(iv) Apply Jensen's inequality to the MVP and the SMVP.

(v) Since the MVP holds for h, the SMVP follows for u.

(vi) The local SMVP implies the maximum principle and that implies (ii). Now use (vi).

(vii) The monotonicity of the mean values in the radius follows from (ii). The fact that every mean value is finite can be seen like this: suppose that $\int_{2\pi} u(z_0 + r_0 e^{i\theta}) d\theta = -\infty$ for some z_0 and $r_0 > 0$. Then the same holds for all $0 < r < r_0$ leading to

$$\iint_{|z-z_0|<r_0} u(x, y) dxdy = -\infty \quad (12.6)$$

But since those $z \in \Omega$ with $u(z) > -\infty$ are dense in Ω (by the MVP since we are assuming that $u \neq -\infty$), it follows from the SMVP that for z_1 arbitrarily close to z_0,

$$\int_{2\pi} u(z_1 + re^{i\theta}) d\theta > -\infty$$

for all $r \in (0, r_1)$ where $r_1 := \text{dist}(z_1, \partial\Omega)$. Hence,

$$\iint_{|z-z_1|<r_1} u(x, y) dxdy > -\infty$$

contradicting (12.6) since z_1 can be chosen arbitrarily close to z_0. The other statements of (viii) are now obvious.

(viii) Consider $\iint_{D} \Delta u(x, y) dxdy$ for a disk D and relate it to the mean-value integral by the divergence theorem. In fact,

$$\frac{d}{dr} \int_{0}^{2\pi} u(z_0 + re^{i\theta}) d\theta = \frac{1}{r} \int_{|z|=r} \frac{\partial u}{\partial n} d\sigma = \frac{1}{r} \int_{|z|\leq r} \Delta u dxdy$$

By (vii), the left-hand side is nonnegative. Thus $\Delta u \geq 0$ as claimed.

(ix) $\log |f(z)|$ is subharmonic since it is harmonic away from the discrete zeros of f. Now use (vii). For the other functions use (v).

(x) Apply (ii) to u and $-u$.

35. (a) This is the important Phragmen–Lindelöf principle. To prove it, let \(\delta > 0 \) and set

\[
 u_\delta(z) := u(z) - \delta |z|^{\rho_1} \cos(\rho_1 \theta), \quad \rho_1 < \rho < \lambda
\]

Applying the maximum principle to \(\{|z| \leq R\} \cap \mathcal{S} \) with large \(R \) then shows that \(u_\delta \leq M \) on \(\mathcal{S} \). Letting \(\delta \to 0 \) finishes the proof. The reader should formulate for herself or himself variants of this principle, say for analytic functions on a strip \(0 < \text{Re} z < 1 \) and bounded by \(M \) on the edges.

(b) Observe that

\[
 h(z) = \sum_{n=1}^{\infty} 2^{-n} \log |z - z_n| - A
\]

is a negative subharmonic function on \(\Omega \) provided \(A \) is large. Then for every \(\delta > 0 \),

\[
 \limsup_{z \to \zeta} (u(z) + \delta h(z)) \leq M
\]

and thus \(u(z) + \delta h(z) \leq M \) in \(\Omega \). Sending \(\delta \to 0 \) concludes the proof.

36. (a) If \(u \in C^2(\Omega) \), then

\[
 \langle u, \Delta \phi \rangle = \langle \Delta u, \phi \rangle \geq 0
\]

since \(\Delta u \geq 0 \), see Problem 33, (iii) and \(\phi \geq 0 \) by assumption. Let \(\chi \geq 0 \) be a radial, compactly supported, smooth bump function with \(\int \chi = 1 \) and \(\text{supp}(\chi) \subset \mathbb{D} \). Then, with \(\chi_\varepsilon(z) := \varepsilon^{-2} \chi(z/\varepsilon) \), let \(u_\varepsilon := \chi_\varepsilon * u \) be defined on

\[
 \Omega_\varepsilon := \{ z \in \Omega \mid \text{dist}(z, \partial \Omega) > \varepsilon \}
\]

The convolution is well-defined since \(u \in L^1_{\text{loc}}(\Omega) \) by Problem 33, (vii). Furthermore, by (vii) of the previous problem, we have \(u_\varepsilon \to u \) as \(\varepsilon \to 0^+ \) and \(u_{\varepsilon_1} \geq u_{\varepsilon_2} \geq u \) if \(\varepsilon_1 > \varepsilon_2 \). Hence, from either the monotone or dominated convergence theorems,

\[
 0 \leq \langle u_\varepsilon, \Delta \phi \rangle \to \langle u, \Delta \rangle
\]

as \(\varepsilon \to 0^+ \). If \(u = \log |f| \) where \(f \) is holomorphic, then

\[
 \mu = \sum_{f(z) = 0} \nu_z \delta_z
\]

where \(\nu_z \geq 1 \) is the order of vanishing of \(f \) at \(z \in \Omega \).

(b) The idea is to use Green’s formula, at least if \(u \in C^2(\Omega) \) and then to approximate. We will employ a slightly different approach here which smooths out the logarithmic potential. Thus, let \(\chi = 1 \) on \(\Omega_1 \) and \(\chi \) smooth and compactly supported in \(\Omega \). Then, by (a), with \(z \in \Omega_1 \) fixed,

\[
 \langle u, \Delta [\chi(\cdot) \log(\varepsilon^2 + |z - \cdot|^2)] \rangle = \int \chi(\zeta) \log(\varepsilon^2 + |z - \zeta|^2) \mu(d\zeta) \quad (12.7)
\]
Now
\[\Delta \log(\varepsilon^2 + |z|^2) = 4 \frac{\partial^2}{\partial z \partial \bar{z}} \log(\varepsilon^2 + |z|^2) = \frac{4\varepsilon^2}{(\varepsilon^2 + |z|^2)^2} \]
is an approximate identity in \(\mathbb{R}^2 \) in the sense of Definition 3.2. Passing to the limit \(\varepsilon \to 0 \) in (12.7) yields, with \(\zeta = \xi + i\eta \),
\[
\begin{align*}
 u(z) + \iint_{\Omega \setminus \Omega_1} u(\zeta)(\Delta \chi)(\zeta) \log |z - \zeta| \, d\xi \, d\eta \\
 + \iint_{\Omega \setminus \Omega_1} u(\zeta) \nabla \chi(\zeta) \cdot \frac{z - \zeta}{|z - \zeta|^2} \, d\xi \, d\eta = \chi(\zeta) \log |z - \zeta| \mu(d\zeta)
\end{align*}
\]
for all \(z \in \Omega_1 \). By putting all integrals over \(\Omega \setminus \Omega_1 \) into the harmonic function, we obtain (11.21) as desired. If \(u = \log |f| \) with \(f \in H(\Omega) \), then
\[
 u(z) = \sum_{\zeta : f(\zeta) = 0} \nu_{\zeta} \log |z - \zeta| + h(z)
\]
where \(\nu_{\zeta} \) is the order of vanishing of \(f \) at \(\zeta \).

For an example where \(u(z) = \int \log |z - \zeta| \mu(d\zeta) \) is not continuous, take \(\mu = \sum_{n=1}^{\infty} \frac{1}{n^2} \delta_{\frac{1}{n}} \). Theusc property follows from Fatou’s lemma.

(c) For the Jensen formula, we first observe this:
\[
\int_0^1 \log |z - e^{2\pi i \theta}| \, d\theta = \begin{cases}
 \log |z| & \text{if } |z| > 1 \\
 0 & \text{if } |z| \leq 1
\end{cases}
\]
This can be done without any calculations: the integral defines a harmonic function \(h(z) \) on \(|z| < 1 \). Clearly, \(h(0) = 0 \) and \(h \) is constant on \(|z| = 1 \). Then, by the maximum principle, \(h = \text{const} = 0 \) in \(|z| \leq 1 \). From this,
\[
\int_0^1 \log |z - e^{2\pi i \theta}| \, d\theta = \log |z| + \int_0^1 \log |z^{-1} - e^{2\pi i \theta}| \, d\theta = \log |z|
\]
provided \(|z| > 1 \) as claimed. Next, from (11.21),
\[
\int_0^1 u(z + re(\theta)) \, d\theta - u(z) = \iint_{|z - \zeta| < r} \log \left(\frac{r}{|z - \zeta|} \right) \mu(d\zeta) \\
 = \int_0^r \mu(D(z, t)) \, dt
\]
CHAPTER 12. HINTS AND SOLUTIONS

which is (11.22). If \(u = \log |f| \) we obtain the well-known Jensen formula for analytic functions: if \(f(z_0) \neq 0 \), then

\[
\int_0^1 \log |f(z_0 + re(\theta))| \, d\theta - \log |f(z_0)| = \sum_{|z-z_0|<r} \log \left(\frac{r}{|z-z_0|} \right)
\]

It is easy to see from this that

\[
\mu(\Omega_1) \leq C(\Omega_1, \Omega)(\sup_{\Omega} u - \sup_{\Omega_1} u)
\]

\[
\|h - \sup_{\Omega_1} u\|_{L^\infty(\Omega_2)} \leq C(\Omega_2, \Omega_1, \Omega)(\sup_{\Omega} u - \sup_{\Omega_1} u)
\]

the inclusions \(\Omega_2 \subset \Omega_1 \subset \Omega \) being compact.

37. (a) The bound (11.23) is obvious from the explicit form of \(P_r \). The Harnack estimate for positive harmonic functions on \(D \) follows from

\[
u(\rho z) = (P_r * u)(\phi)
\]

where \(z = re(\phi) \) and \(0 < r < 1 \), \(0 < \rho < 1 \), \(u(\rho)(\phi) = u(\rho e(\phi)) \). Indeed, we can estimate \(P_r \) in this convolution by (11.23) and then send \(\rho \to 0 \).

Clearly, \(C(r) = \frac{1+r}{1-r} \) is the best constant. For a general domain \(\Omega \), we cover any compact \(K \subset \Omega \) by finitely many disks inside of \(\Omega \) and then compare \(u \) at two different points \(p, q \in K \) by means of a chain of these disks that passes from \(p \) to \(q \). Since Harnack’s inequality is scaling invariant, we conclude that any positive harmonic function \(u \) on \(\mathbb{R}^2 \) satisfies

\[
\sup_{\mathbb{R}^2} u \leq u(z)
\]

where \(z \in \mathbb{R}^2 \) is arbitrary. Hence \(u = \text{const} \) as claimed.

(b) Apply (a) to \(\{u_m - u_n\}_{m>n \geq 1} \). If this is a Cauchy sequence at one point, then it is so uniformly on every compact subset of \(\Omega \) and we are done by Problem 33 (x).

38. If a harmonic majorant exists, then (ii) holds by the MVP. For the converse, let \(h_n \) be harmonic on \(|z| < 1 - \frac{1}{2^n} \) with \(h_n = u \) on \(|z| = 1 - \frac{1}{2^n} \). Then \(\{h_n(0)\}_{n=1}^\infty \) is increasing and bounded by (ii). By Harnack’s principle, it follows that the increasing sequence \(h_n \) converges uniformly on compact sets to a function \(h \) harmonic on \(D \). Clearly, \(h \geq u \) on \(D \) and \(h \) is also the least harmonic majorant. An example of a subharmonic function without a harmonic majorant would be \((P_r(\theta))^\beta \) for any \(\beta > 1 \) or \(\exp(P_r(\theta)) \).

39. It is obvious that (ii) implies (i). For the converse, let \(u \) be the harmonic majorant of \(\log^+ |f| \) on \(D \). It has a harmonic conjugate \(\bar{u} \) on \(D \). Define \(F := u + i\bar{u} \), \(h = e^{-F} \) and \(g = fe^{-F} \). Since \(u \geq 0 \), it follows that \(|h| \leq 1 \) and \(|g| \leq |f|e^{-u} \leq \exp(\log^+ |f| - u) \leq 1 \).
The class of holomorphic functions that satisfy these conditions is very important; it is called the \textit{Nevanlinna class} \(\mathcal{N}(\mathbb{D}) \). It has the following property: if \(f \in \mathcal{N}(\mathbb{D}), \ f \not\equiv 0, \) then
\[f(e^{i\theta}) = \lim_{z \to e^{i\theta}} f(z) \]
exists non-tangentially for (Lebesgue) almost every \(\theta \in [0, 2\pi] \) and
\[\log |f(e^{i\theta})| \in L^1(d\theta). \]
In particular, \(f(e^{i\theta}) \not\equiv 0 \) almost everywhere.

40. (a) These products are the well–known \textit{Blaschke products}. The reader will easily check that
\[\left| 1 - \frac{|z_n|}{|z_n|} \frac{z_n - \bar{z}}{1 - \bar{z}_n z} \right| \leq C(z)(1 - |z_n|) \]
so that the product converges uniformly on compact subset of \(\mathbb{D} \) to \(B \in \mathcal{H}(\mathbb{D}) \) with the required vanishing properties. Also, it is clear that \(|B| \leq 1\). (b) For this observe that \(|B(re(\theta))/B_n(re(\theta))| \in \mathfrak{h}(\mathbb{D})\) where \(B_n \) is the \(n^{th} \) partial product. Thus, by Problem 33 (vii),
\[\int_0^1 |B(re(\theta))/B_n(re(\theta))| d\theta \leq \int_0^1 |B(r'e(\theta))/B_n(r'e(\theta))| d\theta \]
for all \(0 < r < r' < 1 \). Letting \(r' \to 1 \) and then \(n \to \infty \) implies that
\[1 \leq \int_0^1 |B(e(\theta))| d\theta \]
and since \(|B| \leq 1\) on \(\partial \mathbb{D} \) therefore \(|B| = 1\) a.e.

41. This follows from the Schwarz reflection principle. Indeed, if \((U, \phi)\) is the chart around \(p \in \partial N \) as in the formulation of the problem, then we let \(U' \) be a distinct copy of \(U \) and define \(\hat{U} := U \cup U' \) with the boundaries identified. The map \(\phi \) is extended to \(U' \) by reflection across the real line. By the Schwarz reflection principle, the transition maps of these new charts are analytic.

42. (a) It is clear that the germ determines \(p \) as well as the Taylor series at \(p \). (b) \(M \) is arcwise connected and \(\mathcal{R}(M, N, f_0, p_0) \) is obtained by analytic continuation along curves — so it, too, is arcwise connected. If two points \([f, p]\) and \([g, q]\) in \(\mathcal{R}(M, N, f_0, p_0) \) satisfy \(p \neq \), then use that \(M \) is Hausdorff. If \(p = q \), then the germs are distinct and can therefore be separated by open connected neighborhoods via the uniqueness theorem. For the countable base, use that \(M \) satisfies this and check that only countably many paths are needed to analytically continue a germ.
(c) The statements regarding \(\pi \) and \(F \) are clear. The fundamental groups of the surfaces in (11.24) are \(\mathbb{Z} \) and \(\mathbb{Z}_n \), respectively. We can view
\[
R(\mathbb{C}, \mathbb{C}, \log z, 1) = \{ (e^z, z) \mid z \in \mathbb{C} \}, \\
R(\mathbb{C}, \mathbb{C}, z^{\frac{1}{n}}, 1) = \{ (z^n, z) \mid z \in \mathbb{C}^* \}
\]
whence the stated isomorphisms. We shall see that the \textit{ramified surface} in the second case is also \(\mathbb{C} \) but for a very different reason than in the \(\log z \) case.

(d), (e) The detailed hints should be sufficient. Remember that two closed curves in \(\mathbb{D}^* \) are homotopic iff they have the same winding number around 0.

(f) An example of a non-algebraic branch point with finite branching number is
\[
R(\mathbb{C}^*, \mathbb{C}_\infty, \exp(z^{-\frac{1}{2}}), 1)
\]
To prove (11.25) use the Riemann–Hurwitz relation.

Here is a typical application of (11.25): consider the ramified Riemann surface \(\tilde{R} \) of \(\sqrt{(z-z_1) \cdots (z-z_\ell)} \) where \(z_j \in \mathbb{C} \) are distinct points (we shall show below that it is compact). In our notation, we are looking at
\[
\tilde{R}(\mathbb{C}_\infty, \mathbb{C}_\infty, \sqrt{(z-z_1) \cdots (z-z_\ell)}, \zeta), \quad \zeta \neq z_j \forall j
\]
and with one of the two branches of the square root fixed at \(\zeta \). What is the genus of \(\tilde{R} \)? If \(m \) is even, then \(R \) has \(M = m \) branch points, if \(m \) is odd, then it has \(M = m + 1 \) branch points (the point at \(\infty \) is a branch point in that case). In all cases, the branching numbers are one. The number of sheets is \(S = 2 \). Hence,
\[
g_{\tilde{R}} = \frac{M}{2} - 1
\]
In other words, the Riemann surface is a sphere with \(\frac{M}{2} - 1 \) handles attached. Another example is the ramified Riemann surface of \(\sqrt[3]{z^2 - 1} \). It has branch points rooted at \(\pm 1 \) and \(\infty \) with branching number 2 in each case. Also, the number of sheets is three (more on this below). Thus, the genus \(g_{\tilde{R}} = 1 \).

43. This is an example of “sheaf theory”. Let
\[
\mathcal{U} := \{ (p, f) \mid p \in D_\alpha, \ f \in F_\alpha, \ \alpha \in A \}
\]
where \((p, f)(q, g) \) iff \(p = q \) and \(f = g \) in a neighborhood of \(p \). Let \([p, f] \) denote the equivalence class of \((p, f) \). As usual, \(\pi([p, f]) := p \). For each \(f \in F_\alpha \), let
\[
D'_\alpha := \{ [p, f] \mid p \in D_\alpha \}
\]
Clearly, $\pi : D'_\alpha \to D_\alpha$ is bijective and $\{D'_\alpha\}_{\alpha \in \mathcal{A}}$ are a neighborhood base. It is Hausdorff since M is Hausdorff (use this if the base points differ) and because of the uniqueness theorem (use this if the base points coincide). Moreover, if \tilde{M} is a connected component of \mathcal{U}, then $\pi : \tilde{M} \to M$ is easily seen to be a covering (i.e., every point of M has a connected neighborhood V so that π is a homeomorphism between each component of $\pi^{-1}(V)$ and V). Since M is simply connected, \tilde{M} is homeomorphic to M. This reduces to the existence of a globally defined analytic function which agrees with some $f \in F_\alpha$ on each D_α.

44. The formulation of the problem contains detailed hints which should be sufficient.

45. (a) The eigenvalues are the zeros of the characteristic polynomial. If they are all distinct, then by part (b) of the previous problem they are analytic. On the other hand, around each branch point they are analytic relative to the uniformizing variable of part (e) of Problem 42. Recalling how this uniformizing variable was constructed, we see that a Puiseaux series is obtained with $\ell - 1$ being the branch number at the respective branch point. In the Hermitian case, one uses that the eigenvalues are real. This is incompatible with $\ell \geq 2$; hence, the Puiseaux series are Taylor series as claimed (this fact about (real) analytic Hermitian matrices is called Rellich’s theorem).

(b) We shall discuss the example $\sqrt[4]{\sqrt{z} - 1}$ in full detail and leave it to the reader to carry out similar analyses in the other cases. We first do this the old-fashioned way without resultants etc. We expect 8 sheets since $\sqrt[4]{z}$ is what we have when z is very large. Moreover, we see that $z = \infty$ is a branch point with branching number 7. The finite branch points are $z = 0$; this is where the interior \sqrt{z} branches with branching number one. However, we have four branch points in \tilde{R} each of which is rooted at $z = 0$. This comes from the fact that we will have four choices coming from the exterior $\sqrt[4]{\zeta}$. In other words, of the eight sheets, we have four pairs which form a branch rooted over $z = 0$ each of branching number 1. Finally, we need to consider the branching of that exterior $\sqrt[4]{\zeta}$. It happens at $\zeta = 0$, or in other words, at $\sqrt{z} - 1 = 0$ or $z = 1$. Notice something interesting: the three-fold branching at $z = 1$ will only happen for the positive branch of \sqrt{z}; indeed, the negative branch at $z = 1$ yields $\zeta = -2$ and there $\sqrt[4]{\zeta}$ doesn’t branch! Write $z = 1 + \tau$ and observe that

$$
\sqrt[4]{\zeta} = \sqrt[4]{\sqrt{1 + \tau} - 1} = \sqrt[4]{\tau/2 + O(\tau^2)}
$$

for small τ. The conclusion is that of our 8 sheets, exactly 4 will form a branch point over $z = 1$ (with branching number 3), whereas the four other sheets are unbranched at $z = 1$. Now let us compute the genus g:

$$
g = 1 - 8 + \frac{1}{2}(1 + 1 + 1 + 3 + 7) = 0$$
Hence,

\[\tilde{R}(\mathbb{C}P^1, \mathbb{C}P^1, \sqrt[8]{z} - 1, 2) \simeq S^2 \]

Let us now redo the same example using the machinery developed in the previous problem. \(P(w, z) = (w^4 + 1)^2 - z = 0 \) is our underlying irreducible polynomial equation – so 8 sheets. Next, let’s find the critical points as in part (d). These are in the \(z \)-sphere and include \(z = \infty \), all zeros of the leading coefficient in \(w \) (that are none of those here since that coefficient is 1), and finally all zeros of the discriminant of \(P(w, z) \) in \(z \). Recall that these are precisely those \(z \) for which \(P(\cdot, z) = 0 \) and \(P_w(\cdot, z) = 0 \) have a common solution. In our case, \(P_w(w, z) = 8w^3(w^4 + 1) = 0 \) iff either \(w = 0 \) or \(w \in \{ w_1, w_2, w_3, w_4 \} \) where \(w_j = e^{(2j+1)i\pi/4}, 1 \leq j \leq 4 \). This means that \(z = 1 \) or \(z = 0 \), respectively. You can read off a lot from this (viewing \(\tilde{R} \) somewhat imprecisely as a set of pairs \((z, w)\)): there is a unique branch point at \((z, w) = (1, 0)\) with branching number 3 (since \(P_w \) has triple zero there), and branch points at \((z, w) = (0, w_j)\) with branching number 1 for each \(j = 1, 2, 3, 4 \) (in agreement with our previous analysis).

Now cut the \(z \)-sphere \(\mathbb{C}P^1 \) from \(z = 0 \) to \(z = 1 \) through \(z = \infty \). We obtain the cut plane \(A = \mathbb{C} \setminus ((-\infty, 0] \cup [1, \infty)) \), which is simply connected. For each \(z \) in this set, the map \(w \mapsto z = (w^4 + 1)^2 \) is locally invertible (in fact, this is true as long as we don’t hit \(z = 0 \) or \(z = 1 \)). Hence, if we use Problem #2 above, we conclude that there are 8 holomorphic functions, say \(f_j(z) : A \to \mathbb{C}, 0 \leq j \leq 7 \) so that \(z = (f_j(z)^4 + 1)^2 \) identically on \(A \). We can label these functions uniquely in terms of their behavior for large \(z \in A \) where they become branches of \(z^{1/8} \). Let us say that we choose \(\lim_{y \to -\infty} y^{-1/8} f_j(yi) = e^{(2j+1)i\pi/8}. \)

For our ramified Riemann surface \(\tilde{R} \), we note the following obvious fact: all the germs \([f_j, z] \), with \(z \in A \), belong to \(\tilde{R} \) and if we lift the curve \(\gamma(t) = rie^{2\pi i t}, 0 \leq t \leq 1 \) with \(r > 1 \) to \(\tilde{R} \) (i.e., perform analytic continuation along such a loop), then we see that these germs are cyclically permuted according to the cycle \((0, 1, 2, 3, \ldots, 7)\). It is a nice (and important) exercise to figure out what the argument of each \(f_j(x + i0) \) is for \(x > 1 \), \(0 < x < 1 \), and \(x < 0 \) (\(|x| \) large), respectively (the argument is constant on each of the first two intervals, but not on the third). First, simply by taking \(|x| \) very large,

\[
\begin{align*}
 f_j(x + i0) &= e^{ij\pi/4}|f_j(x + i0)| \quad \forall x > 1 \\
 f_j(x + i0) &= e^{i\pi/8+j\pi/4}|f_j(x + i0)| \quad \forall x < 0, |x| \to \infty
\end{align*}
\]

Next, writing \(z = 1 + \zeta \), we obtain \(f_0(z) = \sqrt[8]{\sqrt[4]{1 + \zeta} - 1} \) where each of the roots is chosen to be positive (real) on the positive (real) half-axis. Then, letting \(\zeta \to 0 \) and \(\text{Im} \zeta > 0 \), we observe that \(f_0(x) = |f_0(x)|e^{\pi i/4} \quad \forall 0 < x < 1 \)
More generally, if we pick the branch of \(\sqrt{z} \) with \(\sqrt{x} > 0 \) when \(x > 0 \), and the four branches of \(\sqrt{z} \) in the natural succession (the argument increases by \(\pi/4 \) every time), then we obtain the branches \(f_0, f_2, f_4, f_6 \), whereas the choice of \(\sqrt{x} < 0 \) when \(x > 0 \) leads to \(f_1, f_3, f_5, f_7 \). With this in mind, you can now check that by taking \(\zeta \) small as before,

\[
f_{2j}(x) = |f_{2j}(x)|e^{\pi i/4+j\pi/2} \quad \forall \ 0 < x < 1, \ j = 0, 1, 2, 3
\]
as well as

\[
f_{2j+1}(x) = |f_{2j+1}(x)|e^{\pi i/4+j\pi/2} \quad \forall \ 0 < x < 1, \ j = 0, 1, 2, 3
\]

We also see that analytic continuation along a small loop around \(z = 1 \) leads to the cyclic permutation \((0, 2, 4, 6)\) (for \(j \) odd, \(f_j \) will be unchanged under analytic continuation along such a loop). Finally, from the preceding we see that analytic continuation along a small loop around \(z = 0 \) yields the permutation \((0, 1)(2, 3)(4, 5)(6, 7)\). All of this gives us a much more precise understanding of \(\mathcal{R} \). I invite you to play with any closed curve in \(\mathbb{C} \setminus \{0, 1\} \) that winds around both \(z = 0 \) and \(z = 1 \) and to figure out how a germ \([f_j, 1] \) is continued analytically along that closed curve. I don’t know if it’s possible to figure out that \(\mathcal{R} \) is simply connected without the relation (11.25). In other words, if it’s possible to show that the fundamental group is trivial with your bare hands (it should be, but it looks a little messy). But since we do have (11.25), we can use it and conclude that \(\mathcal{R} \) is simply connected.

46. (a) \(f' \) has degree three and vanishes somewhere, say at \(w \). Then \(f(z+w) = f(w) + \mu z^2 + O(z^3) \) with \(\mu \neq 0 \) (otherwise \(f \) would have degree \(> 2 \)). Since

\[
f(z+w) - f(w) \in \mathcal{M}(M)
\]
is of degree 2, \(z = 0 \) is its unique zero. Thus,

\[
g(z) := \frac{\mu}{f(z+w) - f(z)} - \mathfrak{P}(z) \in \mathcal{H}(M)
\]

and therefore \(g = \text{const} \) which implies the desired representation of \(f \).

(b) Let \(f \in \mathcal{M}(M) \) be even. Then a pole or zero at the origin is necessarily of even order. By considering \((\mathfrak{P}(z))^m f(z) \) for a suitable \(m \in \mathbb{Z} \), we can assume that \(f \) has no zero or pole in \(\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \). Recall that \(\mathfrak{P} \) has exactly four branch points, namely 0 and the half periods \(\omega_1/2, \omega_2/2 \) and \((\omega_1 + \omega_2)/2 \). Hence, for any

\[
z_0 \in \Lambda_* := \{x\omega_1 + y\omega_2 \mid 0 \leq x, y < 1\} \setminus \{0\}
\]
it follows that \(\mathfrak{P}(z) - \mathfrak{P}(z_0) \) has either has two simple zeros at \(\pm z_0 \) (precisely iff \(z_0 \) is not a half-period), or it has a double zero. The latter happens iff \(z_0 \) is a half-period which are exactly those points in \(\Lambda_* \) which are congruent modulo \(\Lambda \) to \(-z_0 \). Therefore, if \(f \) vanishes at such a point it must also have a double zero. In view of the preceding, \(\prod_{k=1}^m (\mathfrak{P}(z) - \mathfrak{P}(z_k)) \in \mathcal{M}(M) \) has precisely the same zeros as \(f \) counted
with multiplicity; applying this procedure to $\frac{1}{f}$, we capture the poles. Hence,

$$g(z) = \prod_{j=1}^{m}(P(z) - P(z_j)) \prod_{\ell=1}^{m}(P(z) - P(\zeta_{\ell}))$$

is a function with exactly the same zeros and poles as f. Hence, $f = cg$ for some constant $c \in \mathbb{C}^*$. To deal with general $f \in \mathcal{M}(M)$, decompose f into an even and odd part:

$$f(z) = (f(z) + f(-z))/2 + (f(z) - f(-z))/2$$

Upon division by Ψ', the odd part becomes even and the previous analysis applies.

